Huang Yuhang, Zhong Fan, Liu Lei
Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, China.
Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
BMC Bioinformatics. 2025 Mar 24;26(1):90. doi: 10.1186/s12859-025-06100-9.
The complexity of biological systems has increasingly been unraveled through computational methods, with biological network analysis now focusing on the construction and exploration of well-defined interaction networks. Traditional graph-theoretical approaches have been instrumental in mapping key biological processes using high-confidence interaction data. However, these methods often struggle with incomplete or/and heterogeneous datasets. In this study, we extend beyond conventional bipartite models by integrating attribute-driven knowledge from the Molecular Signatures Database (MSigDB) using the node2vec algorithm.
Our approach explores unsupervised biological relationships and uncovers potential associations between genes and biological terms through network connectivity analysis. By embedding both human and mouse data into a shared vector space, we validate our findings cross-species, further strengthening the robustness of our method.
This integrative framework reveals both expected and novel biological insights, offering a comprehensive perspective that complements traditional biological network analysis and paves the way for deeper understanding of complex biological processes and diseases.
通过计算方法,生物系统的复杂性越来越多地被揭示出来,目前生物网络分析聚焦于构建和探索定义明确的相互作用网络。传统的图论方法在利用高可信度相互作用数据绘制关键生物过程方面发挥了重要作用。然而,这些方法在处理不完整或/和异质数据集时常常遇到困难。在本研究中,我们通过使用node2vec算法整合来自分子特征数据库(MSigDB)的属性驱动知识,超越了传统的二分模型。
我们的方法通过网络连通性分析探索无监督的生物关系,并揭示基因与生物学术语之间的潜在关联。通过将人类和小鼠数据嵌入到共享向量空间中,我们跨物种验证了我们的发现,进一步增强了我们方法的稳健性。
这个整合框架揭示了预期的和新颖的生物学见解,提供了一个全面的视角,补充了传统的生物网络分析,并为深入理解复杂的生物过程和疾病铺平了道路。