Suppr超能文献

利用螯合配体将富含Zn(PO)的无机/有机杂化界面化学转变为用于坚固水系锌负极的化学。

Turning Zn(PO)-Enriched Inorganic/Organic Hybrid Interfacial Chemistry with Chelating Ligands toward Robust Aqueous Zn Anodes.

作者信息

Li Ao, Hao Jing, Wu Kai, Chang CaiYun, Zhang XiangYong, Gan He, Tan Jin, Xie Ting, Zhou Fu, Wang PengCheng, Han CuiPing, Du HongDa, Li BaoHua, Liu Qi

机构信息

College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

Shenzhen Research Institute, Hunan University, Shenzhen 518000, China.

出版信息

ACS Nano. 2025 Apr 8;19(13):13016-13028. doi: 10.1021/acsnano.4c17583. Epub 2025 Mar 24.

Abstract

Due to the inherent redox potential of the zinc metal anode (ZMA), it is susceptible to corrosion and dendrite formation in aqueous electrolytes. These issues compromise the electroplating-stripping process at the electrolyte-electrode interface, adversely affecting the reversibility of aqueous zinc-ion batteries (AZIBs). Here, we propose a chelating-ligand additive (i.e., DS) strategy to construct in situ an inorganic/organic hybrid bilayer interface. The organic molecule enriched in -PO groups is calculated to preferentially adsorb onto the surface of ZMA. During subsequent reactions, these adsorbed molecules decompose preferentially due to their low lowest unoccupied molecular orbital energy level (0.34 eV), forming a Zn(PO)-enriched inorganic solid electrolyte interphase (SEI) layer. Simultaneously, the intermediate carbon skeleton cross-links, creating an organic layer atop the SEI, thereby forming an inorganic/organic hybrid SEI bilayer interface. This bilayer SEI interface effectively inhibits corrosion and hydrogen evolution reactions (HERs) while regulating the Zn ion flux at the interface, inducing uniform Zn depositions. Consequently, the Zn||Zn symmetric battery demonstrates a long-term cycling lifespan exceeding 1700 h at 5 mA cm. The Zn||I pouch battery yielded a capacity retention of 71.3% after 1100 cycles. This synergistic modulation strategy offers insights into the development of ZMA stabilizer additives, potentially advancing the performance and durability of AZIBs.

摘要

由于锌金属阳极(ZMA)固有的氧化还原电位,它在水性电解质中易受腐蚀并形成枝晶。这些问题会损害电解质 - 电极界面处的电镀 - 剥离过程,对水系锌离子电池(AZIBs)的可逆性产生不利影响。在此,我们提出一种螯合配体添加剂(即DS)策略,以原位构建无机/有机混合双层界面。计算得出富含 -PO基团的有机分子会优先吸附在ZMA表面。在随后的反应中,这些吸附的分子由于其较低的最低未占据分子轨道能级(0.34 eV)而优先分解,形成富含Zn(PO)的无机固体电解质界面(SEI)层。同时,中间的碳骨架交联,在SEI顶部形成有机层,从而形成无机/有机混合SEI双层界面。这种双层SEI界面有效地抑制了腐蚀和析氢反应(HERs),同时调节界面处的锌离子通量,诱导锌均匀沉积。因此,Zn||Zn对称电池在5 mA cm下展示出超过1700 h的长期循环寿命。Zn||I软包电池在1100次循环后容量保持率为71.3%。这种协同调制策略为ZMA稳定剂添加剂的开发提供了思路,有望提升AZIBs的性能和耐久性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验