Suppr超能文献

用于高可逆水系锌电池的无氟有机/无机界面层

A Fluorine-Free Organic/Inorganic Interphase for Highly Reversible Aqueous Zinc Batteries.

作者信息

Yang Xingfu, Tang Xiaoning, Lei Jie, Zeng Xu, Wen Jie, Liu Anni, Xia Shu, Luo Qiuyang, Liu Junnan, Xue An, Han Daliang, Zhou Guangmin

机构信息

School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, P.R. China.

Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering and Low-Carbon Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202504003. doi: 10.1002/anie.202504003. Epub 2025 Apr 30.

Abstract

Construction of robust solid electrolyte interphases (SEIs) has proved effective in mitigating dendrite growth and side reactions of zinc (Zn) anodes in aqueous electrolytes. Fluorinated SEIs, in particular, have garnered significant attention due to their exceptional electrochemical stability and high Zn conductivity. However, the formation of such SEIs typically relies on the use of fluorine (F)-containing precursors, which inadvertently raise environmental and biological concerns because they show high resistance to degradation in natural environments. Herein, we develop an F-free organic/inorganic hybrid SEI for aqueous Zn batteries using a low-cost N-acetyl-D-glucosamine (NAG) electrolyte additive. The NAG additive not only modulates the solvation structure of Zn but also preferentially adsorbs on the Zn anode to promote the in situ formation of a robust organic (Zn chelates)/inorganic (ZnS and ZnCO) hybrid SEI layer, thereby enhancing Zn de-solvation kinetics and Zn plating/stripping reversibility. Consequently, the Zn anode exhibits a long-term cycling over 6500 h at 0.5 mA cm, a high average Coulombic efficiency of 99.6% at 1 mA cm, and greatly extended cycling stability in full cells (up to 2000 cycles). Our electrolyte design paves a promising avenue toward practical Zn batteries that combine performance, cost-effectiveness, and eco-friendliness.

摘要

事实证明,构建坚固的固体电解质界面(SEI)可有效减轻水系电解质中锌(Zn)负极的枝晶生长和副反应。特别是含氟SEI,因其出色的电化学稳定性和高锌导电性而备受关注。然而,此类SEI的形成通常依赖于使用含氟(F)前驱体,这无意中引发了环境和生物方面的担忧,因为它们在自然环境中显示出高抗降解性。在此,我们使用低成本的N-乙酰-D-葡萄糖胺(NAG)电解质添加剂,开发了一种用于水系锌电池的无氟有机/无机混合SEI。NAG添加剂不仅调节锌的溶剂化结构,还优先吸附在锌负极上,以促进坚固的有机(锌螯合物)/无机(ZnS和ZnCO)混合SEI层的原位形成,从而增强锌去溶剂化动力学和锌电镀/剥离可逆性。因此,锌负极在0.5 mA cm下可进行超过6500小时的长期循环,在1 mA cm下具有99.6%的高平均库仑效率,并在全电池中大大延长了循环稳定性(高达2000次循环)。我们的电解质设计为结合性能、成本效益和生态友好性的实用锌电池铺平了一条充满希望的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验