Suppr超能文献

基于自固化策略的单组分可降解高导热液晶环氧树脂及其复合材料

One-Component Degradable High-Thermal-Conductivity Liquid Crystal Epoxy Resins and Their Composites Based on Self-Curing Strategy.

作者信息

Zhao Changbo, Huang Guohua, Xie Hui, Li Xiyan, Feng Lukun, Liu Yuxin, Wang Mingliang, Bao Feng, Xue Zhiyong, Zhu Caizhen, Xu Jian

机构信息

Advanced Materials Research Institute, College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, P. R. China.

Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

出版信息

Macromol Rapid Commun. 2025 Aug;46(15):e2500114. doi: 10.1002/marc.202500114. Epub 2025 Mar 25.

Abstract

High thermal conductivity liquid crystal epoxy resins (LCERs) and their composites are essential for efficient thermal management in electronic devices. The production of LCERs currently depends on combining epoxy monomers and hardeners or catalysts. However, these curing agents or catalysts destroy the liquid crystal phase in the crosslinked network, thereby limiting the thermal conductivity of LCERs. Here, a novel self-curing strategy is developed by incorporating a Schiff base into liquid crystal epoxy monomers, enabling the curing of monomers without additional agents or catalysts. This self-curing method effectively retains the ordered liquid crystal phase in the LCERs. Therefore, the self-cured LCEP-SC resin achieves a thermal conductivity of 0.36 W mK, 133% higher than amine-cured LCEP-DDM, ≈1.8 times higher than that of general bisphenol A epoxy resin (E51-DDM, 0.2 W mK). LCEP-SC-BN composites with 10 wt.% BN further exhibit a thermal conductivity of 0.61 W mK, surpassing LCEP-DDM-BN composites by 42%. Additionally, the dynamic Schiff base structure allows LCERs degradation in acidic DMF/water solutions, enabling efficient recovery of BN fillers. This self-curing strategy provides a sustainable pathway for developing high thermal conductivity LCERs and their composites, offering enhanced thermal conductivity and recyclability for advanced electronic applications.

摘要

高导热性液晶环氧树脂(LCERs)及其复合材料对于电子设备的高效热管理至关重要。目前LCERs的生产依赖于将环氧单体与固化剂或催化剂相结合。然而,这些固化剂或催化剂会破坏交联网络中的液晶相,从而限制了LCERs的热导率。在此,通过将席夫碱引入液晶环氧单体中,开发了一种新型的自固化策略,使单体无需额外的试剂或催化剂即可固化。这种自固化方法有效地保留了LCERs中有序的液晶相。因此,自固化的LCEP-SC树脂的热导率达到0.36 W mK,比胺固化的LCEP-DDM高133%,约为普通双酚A环氧树脂(E51-DDM,0.2 W mK)的1.8倍。含有10 wt.% BN的LCEP-SC-BN复合材料的热导率进一步达到0.61 W mK,比LCEP-DDM-BN复合材料高出42%。此外,动态席夫碱结构使LCERs能够在酸性DMF/水溶液中降解,从而实现BN填料的高效回收。这种自固化策略为开发高导热性LCERs及其复合材料提供了一条可持续的途径,为先进电子应用提供了更高的热导率和可回收性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验