Suppr超能文献

简单蛋白质发泡法制备的三维隔离氧化镁网络增强环氧复合材料及其优异的导热性能

Simple Protein Foaming-Derived 3D Segregated MgO Networks in Epoxy Composites with Outstanding Thermal Conductivity Properties.

作者信息

Ha Su-Jin, Moon Young Kook, Choi Jong-Jin, Hahn Byung-Dong, Ahn Cheol-Woo, Cho Kyung-Hoon, Cha Hyun-Ae

机构信息

Nano Materials Research Division Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 641-831, Republic of Korea.

School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 Sep;12(33):e06465. doi: 10.1002/advs.202506465. Epub 2025 May 28.

Abstract

The miniaturization and high-power density of electronic devices present new challenges for thermal management. Efficient heat dissipation in electrically insulating packaging materials is currently limited by the thermal conductivity of thermal-interface materials (TIMs) and their ability to effectively direct heat toward heat sinks. In this study, MgO-based composites with high thermal conductivities are fabricated to achieve excellent thermal performances by optimizing the heat-transfer path. These composites are produced using a protein foaming method, which effectively forms interconnected ceramic-filler networks. Additionally, the liquid phase formed during the sintering of MgO enhances the bonding with the epoxy matrix, thereby improving the thermal conductivity of the composites. As a result, the composites with 54.64 vol% MgO achieve a high thermal conductivity of 17.19 W m K, which is 101 times higher than that of pure epoxy, 3.7 times higher than that of randomly dispersed composites, and even superior to that of nitride-based composites. Moreover, the composites also exhibited a low thermal-expansion coefficient (27.76 ppm °C) and high electrical-insulation strength (51.51 kV mm), ensuring good thermal and electrical performance for electronic-packaging applications. The strategic design of the TIM microstructures for effectively directing heat offers a promising solution for efficient thermal management in integrated electronics.

摘要

电子设备的小型化和高功率密度给热管理带来了新的挑战。目前,电绝缘包装材料中的高效散热受到热界面材料(TIMs)的热导率及其将热量有效导向散热器能力的限制。在本研究中,通过优化传热路径制备了具有高导热率的MgO基复合材料,以实现优异的热性能。这些复合材料采用蛋白质发泡法制备,该方法有效地形成了相互连接的陶瓷填料网络。此外,MgO烧结过程中形成的液相增强了与环氧基体的结合,从而提高了复合材料的热导率。结果,含有54.64体积%MgO的复合材料实现了17.19 W m K的高导热率,比纯环氧树脂高101倍,比随机分散的复合材料高3.7倍,甚至优于氮化物基复合材料。此外,该复合材料还表现出低热膨胀系数(27.76 ppm °C)和高电绝缘强度(51.51 kV mm),确保了电子封装应用中良好的热性能和电性能。对TIM微观结构进行有效导热的策略性设计为集成电子学中的高效热管理提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/12412586/a5d3b8b04902/ADVS-12-e06465-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验