Pušnik Črešnar Klementina, Vidal Julio
Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia.
Polymers (Basel). 2025 Jun 29;17(13):1819. doi: 10.3390/polym17131819.
In the pursuit of environmental sustainability, reduced emissions, and alignment with circular economy principles, bio-epoxy resin nanocomposites have emerged as a promising alternative to traditional petroleum-based resins. This study investigates the development of novel bio-epoxy nanocomposites incorporating iron-oxide nanoparticles (FeO, MnP) as multifunctional fillers at loadings of 0.5 wt.% and 3.0 wt.%. MnP nanoparticles were synthesized and subsequently functionalized with citric acid (MnP-CA) to enhance their surface properties. Comprehensive characterization of MnP and MnP-CA was performed using X-ray diffraction (XRD) to determine the crystalline structure, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and zeta potential measurements to confirm surface functionalization. The bio-epoxy resins matrix (bio-EP), optimized for compatibility with MnP and MnP-CA, was thoroughly analyzed in terms of chemical structure, thermal stability, curing behavior, dynamic-mechanical properties, and surface characteristics. Non-isothermal differential scanning calorimetry (DSC) was employed to evaluate the curing kinetics of both the neat (bio-EP) and the MnP/MnP-CA-reinforced composites, offering insights into the influence of nanoparticle functionalization on the resin system. Surface zeta potential measurements further elucidated the effect of filler content on the surface charge and hydrophilicity. Magnetic characterization revealed superparamagnetic behavior in all MnP- and MnP-CA-reinforced (bio-EP) composites. This research provides a foundational framework for the design of green bio-epoxy nanocomposites, demonstrating their potential as environmentally friendly materials and representing an emerging class of sustainable alternatives. The results underscore the viability of bio-epoxy systems as a transformative solution for advancing sustainable resin technologies across eco-conscious industries.
在追求环境可持续性、减少排放以及符合循环经济原则的过程中,生物环氧树脂纳米复合材料已成为传统石油基树脂的一种有前途的替代品。本研究调查了新型生物环氧纳米复合材料的开发,该复合材料在0.5 wt.%和3.0 wt.%的负载量下掺入了作为多功能填料的氧化铁纳米颗粒(FeO、MnP)。合成了MnP纳米颗粒,随后用柠檬酸(MnP-CA)对其进行功能化处理,以增强其表面性能。使用X射线衍射(XRD)确定晶体结构、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、热重分析(TGA)以及zeta电位测量对MnP和MnP-CA进行了全面表征,以确认表面功能化。对针对与MnP和MnP-CA的相容性进行了优化的生物环氧树脂基体(bio-EP),在化学结构、热稳定性、固化行为动态力学性能和表面特性方面进行了深入分析。采用非等温差示扫描量热法(DSC)评估纯(bio-EP)和MnP/MnP-CA增强复合材料的固化动力学,深入了解纳米颗粒功能化对树脂体系的影响。表面zeta电位测量进一步阐明了填料含量对表面电荷和亲水性的影响。磁性表征揭示了所有MnP和MnP-CA增强(bio-EP)复合材料中的超顺磁行为。本研究为绿色生物环氧纳米复合材料的设计提供了一个基础框架,证明了它们作为环境友好材料的潜力,并代表了一类新兴的可持续替代品。结果强调了生物环氧体系作为推进生态意识行业可持续树脂技术的变革性解决方案的可行性。