Akter Sadia, Fuad Mohtasim, Mahmud Zimam, Tamanna Sonia, Sayem Mohammad, Raj Khalid Hasan, Howlader Md Zakir Hossain
Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
Biochem Biophys Rep. 2025 Mar 8;42:101972. doi: 10.1016/j.bbrep.2025.101972. eCollection 2025 Jun.
Ezrin (EZR) is a crucial linker between the actin cytoskeleton and the plasma membrane. It interacts with proteins involved in cancer-related signaling pathways. To assess the impact of nonsynonymous single nucleotide polymorphisms (nsSNPs) on EZR structure and function, we employed bioinformatics tools (SIFT, PolyPhen-2, PROVEAN, PhD-SNP, SNPs&GO, SuSPect, and FATHMM) and identified deleterious variants. Stability analyses using MUpro, mCSM, I-Mutant 2.0, and DynaMut2 revealed six destabilizing nsSNPs (F240S, H288D, I248T, L59Q, L125S, and L225P). Structural modeling using HOPE, MutPred2, AlphaFold, Swiss-Model, and protein-protein docking using HADDOCK 2.4 assessed the impact on the EZR-EBP50 complex. Binding free energy calculations, salt bridge analysis, and interface residue mapping further confirmed that the L225P, F240S, and I248T mutations significantly impaired EZR-EBP50 interaction, potentially disrupting key signaling pathways. Molecular dynamics simulations indicated that mutant EZR proteins exhibited reduced stability, flexibility, and hydrogen bonding. This first comprehensive in silico analysis of EZR highlights pathogenic nsSNPs that may contribute to disease progression. These findings provide a foundation for experimental validation and may inform targeted therapies for EZR-related pathologies.
埃兹蛋白(EZR)是肌动蛋白细胞骨架与质膜之间的关键连接蛋白。它与参与癌症相关信号通路的蛋白质相互作用。为了评估非同义单核苷酸多态性(nsSNPs)对EZR结构和功能的影响,我们使用了生物信息学工具(SIFT、PolyPhen-2、PROVEAN、PhD-SNP、SNPs&GO、SuSPect和FATHMM)并鉴定出有害变异。使用MUpro、mCSM、I-Mutant 2.0和DynaMut2进行的稳定性分析揭示了六个使蛋白不稳定的nsSNPs(F240S、H288D、I248T、L59Q、L125S和L225P)。使用HOPE、MutPred2、AlphaFold进行的结构建模以及使用HADDOCK 2.4进行的蛋白质-蛋白质对接评估了对EZR-EBP50复合物的影响。结合自由能计算、盐桥分析和界面残基映射进一步证实,L225P、F240S和I248T突变显著损害了EZR-EBP50相互作用,可能破坏关键信号通路。分子动力学模拟表明,突变型EZR蛋白表现出降低的稳定性、灵活性和氢键作用。对EZR的这首次全面的计算机模拟分析突出了可能导致疾病进展的致病性nsSNPs。这些发现为实验验证提供了基础,并可能为EZR相关病理学的靶向治疗提供依据。