Suppr超能文献

基于人工智能计算机辅助诊断的数字乳腺摄影术预测HER2阳性和三阴性乳腺癌患者新辅助化疗反应:与MRI的比较

Digital mammography with AI-based computer-aided diagnosis to predict neoadjuvant chemotherapy response in HER2-positive and triple-negative breast cancer patients: comparison with MRI.

作者信息

Kim Haejung, Choi Ji Soo, Chi Sang Ah, Ryu Jai Min, Lee Jeong Eon, Kim Myoung Kyoung, Lee Jeongmin, Ko Eun Sook, Ko Eun Young, Han Boo-Kyung

机构信息

Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.

出版信息

Eur Radiol. 2025 Mar 25. doi: 10.1007/s00330-025-11390-x.

Abstract

OBJECTIVE

To investigate whether digital mammography (DM) with artificial intelligence-based computer-aided diagnosis (AI-CAD) predicts pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in human epidermal growth factor receptor 2 (HER2)-positive and triple-negative (TN) breast cancers and compare performance with dynamic contrast-enhanced (DCE)-MRI.

MATERIALS AND METHODS

In this single-center study, patients who underwent NAC and surgery for HER2-positive or TN cancers between September 2020 and August 2021 were retrospectively selected to develop prediction models for pCR after NAC. From a prospective ASLAN (Avoid axillary Sentinel Lymph node biopsy After Neoadjuvant chemotherapy) trial, HER2-positive and TN cancer patients who underwent NAC and surgery between December 2021 and July 2022 were prospectively selected for model validation. Clinical-pathologic data and DM and MRI scans were obtained before and after NAC. Logistic regression analyses identified factors associated with pCR for model development and four models (clinical-pathologic, MRI, DM-AI-CAD, and combined) were evaluated.

RESULTS

A total of 259 women (mean age, 53 years ± 10.5 [SD]) constituted the development cohort and 119 (50.8 years ± 11.1) the validation cohort. Age, clinical N stage, estrogen receptor, progesterone receptor, and Ki-67 were incorporated into the clinical-pathologic model. In the validation cohort, the DM-AI-CAD model, applying AI-CAD score ≤ 16 on post-NAC DM as the radiologic CR criterion, showed a higher area under the receiver operating characteristic curve (AUC) compared to the clinical-pathologic model (0.72 vs. 0.62; p = 0.01) for pCR. However, the MRI model showed the highest AUC (0.83), then the combined model (0.78).

CONCLUSION

The model utilizing post-NAC DM with AI-CAD score ≤ 16 predicted pCR more accurately than the clinical-pathologic model in HER2-positive and TN cancers but was inferior to the MRI model.

KEY POINTS

Question The performance of digital mammography (DM) with AI-based computer-aided diagnosis (AI-CAD) for predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) is unclear. Findings The DM-AI-CAD model incorporating AI-CAD score ≤ 16 on post-NAC DM predicted pCR more accurately than the clinical-pathologic model but not the MRI model. Clinical relevance The DM-AI-CAD model has potential to predict pCR after NAC in breast cancer patients for whom MRI is unavailable or contraindicated.

摘要

目的

探讨基于人工智能的计算机辅助诊断(AI-CAD)的数字化乳腺摄影(DM)能否预测人表皮生长因子受体2(HER2)阳性和三阴性(TN)乳腺癌新辅助化疗(NAC)后的病理完全缓解(pCR),并与动态对比增强(DCE)-MRI的性能进行比较。

材料与方法

在这项单中心研究中,回顾性选取2020年9月至2021年8月期间接受NAC及HER2阳性或TN癌手术的患者,以建立NAC后pCR的预测模型。从一项前瞻性ASLAN(新辅助化疗后避免腋窝前哨淋巴结活检)试验中,前瞻性选取2021年12月至2022年7月期间接受NAC及手术的HER2阳性和TN癌患者进行模型验证。在NAC前后获取临床病理数据以及DM和MRI扫描图像。通过逻辑回归分析确定与pCR相关的因素用于模型构建,并对四个模型(临床病理模型、MRI模型、DM-AI-CAD模型和联合模型)进行评估。

结果

共有259名女性(平均年龄53岁±10.5[标准差])构成了开发队列,119名(50.8岁±11.1)构成了验证队列。年龄、临床N分期、雌激素受体、孕激素受体和Ki-67被纳入临床病理模型。在验证队列中,以NAC后DM上AI-CAD评分≤16作为放射学CR标准的DM-AI-CAD模型,在预测pCR方面,其受试者操作特征曲线下面积(AUC)高于临床病理模型(0.72对0.62;p = 0.01)。然而,MRI模型的AUC最高(0.83),其次是联合模型(0.78)。

结论

在HER2阳性和TN癌中,利用NAC后DM且AI-CAD评分≤16的模型比临床病理模型更准确地预测了pCR,但不如MRI模型。

关键点

问题基于人工智能的计算机辅助诊断(AI-CAD)的数字化乳腺摄影(DM)预测新辅助化疗(NAC)后病理完全缓解(pCR)的性能尚不清楚。发现纳入NAC后DM上AI-CAD评分≤16的DM-AI-CAD模型比临床病理模型更准确地预测了pCR,但不如MRI模型。临床意义对于无法进行MRI检查或有MRI检查禁忌证的乳腺癌患者,DM-AI-CAD模型有潜力预测NAC后的pCR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验