Suppr超能文献

冠状动脉疾病中介于血液动力学、组织力学和病理生理学之间的联系:一种新的基于代理并集成四面体网格的模型。

Bridging hemodynamics, tissue mechanics, and pathophysiology in coronary artery disease: A new agent-based model with tetrahedral mesh integration.

作者信息

Warren Jeremy, Corti Anna, Meyer Clark A, Hayenga Heather N

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson TX 75080, USA.

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

出版信息

J Biomech. 2025 Apr;183:112631. doi: 10.1016/j.jbiomech.2025.112631. Epub 2025 Mar 11.

Abstract

We introduce a new multi-physics, multi-scale modeling approach to understand plaque progression during coronary artery disease. Prior works have coupled agent-based models (ABMs) with finite element analysis (FEA) or computational fluid dynamics (CFD) to study the individual contributions of tissue mechanics or hemodynamics to plaque growth. However, these approaches could not simultaneously capture the dynamic interplay between all three domains that drive plaque development. This study aims to present a novel method that merges hemodynamics via CFD, biological processes via ABM, and biomechanics via FEA into a single multi-scale, multi-physics simulation (CAFe). A description of the mechanisms and modeling approaches utilized in the CAFe model is provided, as well as preliminary exploration of the model's capabilities in idealized healthy and stenosed coronary artery models. A volumetric 3D tetrahedral mesh of the artery is shared between CFD, ABM, and FEA to simulate geometrical and biological changes with continuity and consistency. The CFD and FEA modules, implemented with FEBio, calculate the wall shear stress and structural stress and strain, respectively. These biomechanical values are passed to the ABM, implemented in MATLAB, which simulates vascular remodeling using molecular diffusion, cell migration, equations for cellular processes, and volumetric growth to update the geometry. Initial results using CAFe suggest atherosclerotic arteries seek to maintain a hemodynamic threshold through preferential growth and remodeling downstream of a stenosis. The innovative approach described herein marks a significant step forward in predictive modeling of CAD progression and paves the way for powerful coupling of the spatiotemporal-dependent remodeling paradigms exhibited by the disease.

摘要

我们引入了一种新的多物理、多尺度建模方法,以了解冠状动脉疾病期间斑块的进展情况。先前的研究已将基于主体的模型(ABM)与有限元分析(FEA)或计算流体动力学(CFD)相结合,以研究组织力学或血流动力学对斑块生长的各自贡献。然而,这些方法无法同时捕捉驱动斑块发展的所有三个领域之间的动态相互作用。本研究旨在提出一种新颖的方法,将通过CFD的血流动力学、通过ABM的生物过程以及通过FEA的生物力学合并到一个单一的多尺度、多物理模拟(CAFe)中。本文提供了CAFe模型中所使用的机制和建模方法的描述,以及在理想化的健康和狭窄冠状动脉模型中对该模型能力的初步探索。动脉的三维四面体体积网格在CFD、ABM和FEA之间共享,以连续且一致地模拟几何和生物学变化。用FEBio实现的CFD和FEA模块分别计算壁面剪应力以及结构应力和应变。这些生物力学值被传递到在MATLAB中实现的ABM,该ABM使用分子扩散、细胞迁移、细胞过程方程和体积生长来模拟血管重塑,以更新几何形状。使用CAFe的初步结果表明,动脉粥样硬化动脉试图通过在狭窄下游的优先生长和重塑来维持血流动力学阈值。本文所述的创新方法在CAD进展的预测建模方面迈出了重要一步,并为该疾病所表现出的时空依赖性重塑范式的强大耦合铺平了道路。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验