Suppr超能文献

血管适应性的多尺度计算建模:一种使用基于智能体模型的系统生物学方法。

Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models.

作者信息

Corti Anna, Colombo Monika, Migliavacca Francesco, Rodriguez Matas Jose Felix, Casarin Stefano, Chiastra Claudio

机构信息

Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland.

出版信息

Front Bioeng Biotechnol. 2021 Nov 2;9:744560. doi: 10.3389/fbioe.2021.744560. eCollection 2021.

Abstract

The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.

摘要

心血管疾病的广泛发病率以及相关的死亡率和发病率,再加上强大计算资源的出现,推动了血管病理生理学领域计算建模的广泛研究,并促进了模型作为生物医学研究的支持。鉴于生物系统的多尺度性质,整合不同空间和时间尺度的现象对于捕捉血管适应过程背后的力学生物学机制至关重要。在这方面,基于主体的模型已证明能够成功地融入系统生物学原理,并捕捉不同病理生理条件下细胞系统的涌现行为。此外,基于主体的模型通过其模块化结构,适合在一个可以将分子途径与细胞和组织水平联系起来的多尺度框架内与基于连续介质的模型集成。这可以有助于改进现有疗法和/或开发新的治疗策略。本综述考察了血管适应的多尺度计算框架,重点是将基于主体的方法与连续介质模型相结合,从系统生物学的角度描述血管病理生理学。最新进展突出了该领域当前的差距和局限性,从而为可能成为未来研究重点的新探索领域提供了启示。在基于主体的多尺度建模框架中纳入分子细胞内途径(如基因组学或蛋白质组学)肯定会为前景广阔的个性化医疗做出巨大贡献。还需要努力应对这些多尺度框架在验证、不确定性量化、校准和验证方面遇到的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ada/8593007/cc4f9cd0b8b8/fbioe-09-744560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验