Pruteanu Ciprian G, Daramola Ayobami D, Kirsz Marcin, Robertson Cerian E A, Jones Luke J, Wang Tianrui, Loveday John S, Ackland Graeme J, Alderman Oliver L G, Proctor John E
SUPA, School of Physics and Astronomy and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Materials & Physics Research Group, SEE Building, University of Salford, Manchester M5 4QJ, United Kingdom.
J Phys Chem B. 2025 Apr 3;129(13):3420-3427. doi: 10.1021/acs.jpcb.5c00018. Epub 2025 Mar 25.
We performed a series of neutron scattering experiments on deeply subcritical liquid nitrogen at 90 K (0.7). Our findings, when taken together with our previous results at 160 K (1.27) and 300 K (2.4), allow the Frenkel line phenomenon to be characterized in a reliable and consistent manner over an extremely broad temperature range, extending into the subcritical regime. Through an analysis of local order, we show how the fluid structure changes as the Frenkel line is crossed and present a new method for identifying the line. Our determination of coordination numbers shows a remarkable data collapse when plotted against density. This allows us to produce a universal relationship relating the coordination number to the density of a simple fluid, dictated by molecular/atomic size and its density on the melt line.
我们在90K(0.7)的深度亚临界液氮上进行了一系列中子散射实验。我们的研究结果与之前在160K(1.27)和300K(2.4)时的结果相结合,使得能够在极宽的温度范围内,一直延伸到亚临界区域,以可靠且一致的方式对弗伦克尔线现象进行表征。通过对局部有序性的分析,我们展示了流体结构在穿过弗伦克尔线时是如何变化的,并提出了一种识别该线的新方法。我们对配位数的测定表明,当与密度作图时,数据呈现出显著的汇聚。这使我们能够得出一个通用关系,将配位数与简单流体的密度联系起来,该关系由分子/原子大小及其在熔点线上的密度决定。