Qiu Xinyue, Wu Chao, Tan Daniel Q, Liang Ruihong, Liu Chen, Ma Yinchang, Zhang Xi-Xiang, Wei Shiyang, Zhang Junwei, Tan Zhi, Wang Zhipeng, Lv Xiang, Wu Jiagang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China.
Nat Commun. 2025 Mar 25;16(1):2894. doi: 10.1038/s41467-025-58269-5.
Piezoceramics for high-power applications require both high piezoelectric coefficient (d) and mechanical quality factor (Q). However, the trade-off between them poses a significant challenge in achieving high values simultaneously, which is more prominent in lead-free piezoceramics. Here, we propose a new strategy, local Cu-acceptor defect dipoles embedded orthorhombic-tetragonal phase boundary engineering (O-T PBE), to balance d and Q in potassium sodium niobate piezoceramics. This is validated in 0.95(KNa)NbO-0.05(BiNa)HfO-0.2%molFeO-xmol%CuO ceramics. Our strategy simultaneously maintains the O-T PBE and introduces local dimeric and trimeric defects. The dimeric defects form defect dipole polarization that pins domain wall motion, while the trimeric ones introduce the local structural heterogeneity that leads to nano-scale multi-phase coexistence and abundant nano-domains. Encouragingly, for the Cu-doped sample with x = 1, Q increases by a factor of 4, but d only decreases by 1/5 (i.e., achieving a d of 340 pC/N and a Q of 256). Our research provides a new paradigm for balancing d and Q in lead-free piezoceramics, which holds promise for high-power applications.
用于高功率应用的压电陶瓷需要同时具备高压电系数(d)和机械品质因数(Q)。然而,它们之间的权衡给同时实现高值带来了重大挑战,这在无铅压电陶瓷中更为突出。在此,我们提出一种新策略,即嵌入正交 - 四方相界工程(O - T PBE)的局部铜受主缺陷偶极子,以平衡铌酸钾钠压电陶瓷中的d和Q。这在0.95(KNa)NbO - 0.05(BiNa)HfO - 0.2%mol FeO - xmol%CuO陶瓷中得到了验证。我们的策略同时维持了O - T PBE并引入了局部二聚体和三聚体缺陷。二聚体缺陷形成缺陷偶极子极化,从而抑制畴壁运动,而三聚体缺陷则引入局部结构不均匀性,导致纳米级多相共存和丰富的纳米畴。令人鼓舞的是,对于x = 1的铜掺杂样品,Q增加了4倍,但d仅降低了1/5(即实现了340 pC/N的d和256的Q)。我们的研究为平衡无铅压电陶瓷中的d和Q提供了一种新范式,有望用于高功率应用。