Suppr超能文献

使用群组关联建模和机器学习增强对多重耐药微生物的诊断

Enhanced diagnosis of multi-drug-resistant microbes using group association modeling and machine learning.

作者信息

Saliba Julian G, Zheng Wenshu, Shu Qingbo, Li Liqiang, Wu Chi, Xie Yi, Lyon Christopher J, Qu Jiuxin, Huang Hairong, Ying Binwu, Hu Tony Ye

机构信息

Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.

Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA.

出版信息

Nat Commun. 2025 Mar 25;16(1):2933. doi: 10.1038/s41467-025-58214-6.

Abstract

New solutions are needed to detect genotype-phenotype associations involved in microbial drug resistance. Herein, we describe a Group Association Model (GAM) that accurately identifies genetic variants linked to drug resistance and mitigates false-positive cross-resistance artifacts without prior knowledge. GAM analysis of 7,179 Mycobacterium tuberculosis (Mtb) isolates identifies gene targets for all analyzed drugs, revealing comparable performance but fewer cross-resistance artifacts than World Health Organization (WHO) mutation catalogue approach, which requires expert rules and precedents. GAM also reveals generalizability, demonstrating high predictive accuracy with 3,942 S. aureus isolates. GAM refinement by machine learning (ML) improves predictive accuracy with small or incomplete datasets. These findings were validated using 427 Mtb isolates from three sites, where GAM inputs are also found to be more suitable in ML prediction models than WHO inputs. GAM + ML could thus address the limitations of current drug resistance prediction methods to improve treatment decisions for drug-resistant microbial infections.

摘要

需要新的解决方案来检测微生物耐药性中涉及的基因型-表型关联。在此,我们描述了一种群体关联模型(GAM),它可以在无需先验知识的情况下准确识别与耐药性相关的基因变异,并减少假阳性交叉耐药假象。对7179株结核分枝杆菌(Mtb)分离株进行的GAM分析确定了所有分析药物的基因靶点,与世界卫生组织(WHO)突变目录方法相比,其表现相当,但交叉耐药假象更少,后者需要专家规则和先例。GAM还显示出通用性,在对3942株金黄色葡萄球菌分离株进行分析时表现出较高的预测准确性。通过机器学习(ML)对GAM进行优化,可在小型或不完整数据集上提高预测准确性。使用来自三个地点的427株Mtb分离株对这些发现进行了验证,结果发现GAM输入在ML预测模型中也比WHO输入更合适。因此,GAM+ML可以解决当前耐药性预测方法的局限性,以改善耐药性微生物感染的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bd5/11937555/b7d5d1ce0b9d/41467_2025_58214_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验