Lai Yu-Xuan, Li Ri-Yu, Young Christine
Functional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 640, Taiwan.
Chemphyschem. 2025 Jun 23;26(12):e202400910. doi: 10.1002/cphc.202400910. Epub 2025 Apr 9.
As global energy and environmental challenges intensify, advancing renewable energy storage technologies is critical. Supercapacitors, known for their rapid charge-discharge rates and exceptional cycling stability, are a promising solution; however, they are constrained by their comparatively low energy density. This study addresses this limitation by developing high-performance Mo-CoS nanoplates derived from metal-organic frameworks for asymmetric supercapacitor applications. Using ZIF-67 nanoplates as precursors, Mo-CoS hybrids were synthesized through a two-step process that included carbonization followed by sulfurization. The Mo-CoS hybrids maintained its plate-like morphology with plentiful active sites, which are crucial for superior electrochemical performance. The Mo-CoS electrode delivers a specific capacitance of 1382.6 F g at 0.5 A g, significantly surpassing that of CoS and MoS alone. An asymmetric supercapacitor incorporating Mo-CoS and ZIF-67-derived carbon electrodes demonstrate a remarkable energy density of 49.4 Wh kg at a power density of 703 W kg, while retaining 72.09% of their initial performance after 10 000 cycles. The findings underscore the potential of materials derived from metal-organic frameworks (MOFs) in enhancing supercapacitor technology, as they offer a combination of high capacitance and long-term stability.
随着全球能源和环境挑战的加剧,推进可再生能源存储技术至关重要。超级电容器以其快速的充放电速率和出色的循环稳定性而闻名,是一种很有前途的解决方案;然而,它们受到相对较低的能量密度的限制。本研究通过开发用于不对称超级电容器应用的、由金属有机框架衍生的高性能Mo-CoS纳米片来解决这一限制。以ZIF-67纳米片为前驱体,通过包括碳化和硫化的两步过程合成了Mo-CoS杂化物。Mo-CoS杂化物保持其具有大量活性位点的片状形态,这对于优异的电化学性能至关重要。Mo-CoS电极在0.5 A g下的比电容为1382.6 F g,显著超过单独的CoS和MoS。一种包含Mo-CoS和ZIF-67衍生碳电极的不对称超级电容器在功率密度为703 W kg时表现出49.4 Wh kg的显著能量密度,同时在10000次循环后仍保留其初始性能的72.09%。这些发现强调了源自金属有机框架(MOF)的材料在增强超级电容器技术方面的潜力,因为它们兼具高电容和长期稳定性。