Currie Dustin W, Lewis Chantal, Lutgring Joseph D, Kazakova Sophia V, Baggs James, Korhonen Lauren, Correa Maria, Goodenough Dana, Olson Danyel M, Szydlowski Jill, Dumyati Ghinwa, Fridkin Scott K, Wilson Christopher, Guh Alice Y, Reddy Sujan C, Hatfield Kelly M
Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, GAUSA.
CDC Foundation, Atlanta, GA, USA.
Infect Control Hosp Epidemiol. 2025 Mar 26;46(5):1-9. doi: 10.1017/ice.2024.204.
Medicare claims are frequently used to study infection (CDI) epidemiology. However, they lack specimen collection and diagnosis dates to assign location of onset. Algorithms to classify CDI onset location using claims data have been published, but the degree of misclassification is unknown.
We linked patients with laboratory-confirmed CDI reported to four Emerging Infections Program (EIP) sites from 2016-2021 to Medicare beneficiaries with fee-for-service Part A/B coverage. We calculated sensitivity of ICD-10-CM codes in claims within ±28 days of EIP specimen collection. CDI was categorized as hospital, long-term care facility, or community-onset using three different Medicare claims-based algorithms based on claim type, ICD-10-CM code position, duration of hospitalization, and ICD-10-CM diagnosis code presence-on-admission indicators. We assessed concordance of EIP case classifications, based on chart review and specimen collection date, with claims case classifications using Cohen's kappa statistic.
Of 12,671 CDI cases eligible for linkage, 9,032 (71%) were linked to a single, unique Medicare beneficiary. Compared to EIP, sensitivity of CDI ICD-10-CM codes was 81%; codes were more likely to be present for hospitalized patients (93.0%) than those who were not (56.2%). Concordance between EIP and Medicare claims algorithms ranged from 68% to 75%, depending on the algorithm used (κ = 0.56-0.66).
ICD-10-CM codes in Medicare claims data had high sensitivity compared to laboratory-confirmed CDI reported to EIP. Claims-based epidemiologic classification algorithms had moderate concordance with EIP classification of onset location. Misclassification of CDI onset location using Medicare algorithms may bias findings of claims-based CDI studies.
医疗保险理赔数据常用于研究艰难梭菌感染(CDI)的流行病学。然而,这些数据缺乏标本采集和诊断日期,无法确定发病地点。虽然已经发表了利用理赔数据对CDI发病地点进行分类的算法,但错误分类的程度尚不清楚。
我们将2016年至2021年期间向四个新兴感染项目(EIP)站点报告的实验室确诊CDI患者与享有按服务收费的A/B部分医保覆盖的医疗保险受益人进行了关联。我们计算了EIP标本采集前后±28天内理赔数据中ICD-10-CM编码的敏感性。根据理赔类型、ICD-10-CM编码位置、住院时间和ICD-10-CM诊断编码入院时存在指标,使用三种不同的基于医疗保险理赔的算法将CDI分类为医院发病、长期护理机构发病或社区发病。我们使用Cohen's kappa统计量评估基于图表审查和标本采集日期的EIP病例分类与理赔病例分类的一致性。
在12,671例符合关联条件的CDI病例中,9,032例(71%)与单一的、唯一的医疗保险受益人相关联。与EIP相比,CDI的ICD-10-CM编码敏感性为81%;住院患者(93.0%)比未住院患者(56.2%)更有可能出现编码。根据所使用的算法,EIP与医疗保险理赔算法之间的一致性在68%至75%之间(κ = 0.56 - 0.66)。
与向EIP报告的实验室确诊CDI相比,医疗保险理赔数据中的ICD-10-CM编码具有较高的敏感性。基于理赔的流行病学分类算法与EIP发病地点分类具有中等程度的一致性。使用医疗保险算法对CDI发病地点进行错误分类可能会使基于理赔的CDI研究结果产生偏差。