Suppr超能文献

对载有阿霉素的电纺纳米纤维及其抗癌活性能力的监督式机器学习分析。

A supervised machine-learning analysis of doxorubicin-loaded electrospun nanofibers and their anticancer activity capabilities.

作者信息

Rostami Mohammadreza, Gharibshahian Maliheh, Mostafavi Mehrnaz, Sufali Ali, Golmohammadi Mahsa, Barati Mohammad Reza, Maleki Reza, Beheshtizadeh Nima

机构信息

Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Food Science and Nutrition group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.

出版信息

Front Bioeng Biotechnol. 2025 Mar 11;13:1493194. doi: 10.3389/fbioe.2025.1493194. eCollection 2025.

Abstract

Thanks to the diverse advantages of electrospun nanofibers, multiple drugs have been loaded in these nanoplatforms to be delivered healthily and effectively. Doxorubicin is a drug used in chemotherapy, and its various delivery and efficacy parameters encounter challenges, leading to the seeking of novel delivery methods. Researchers have conducted numerous laboratory investigations on the encapsulation of doxorubicin within nanofiber materials. This method encompasses various parameters for the production of fibers and drug loading, categorized into device-related, material-related, and study design parameters. This study employed a supervised machine-learning analysis to extract the influencing parameters of the input from quantitative data for doxorubicin-loaded electrospun nanofibers. The study also determined the significance coefficient of each parameter that influences the output results and identified the optimum points and intervals for each parameter. Our Support Vector Machine (SVM) analysis findings showed that doxorubicin-loaded electrospun nanofibers could be optimized through employing a machine learning-based investigation on the polymer solution parameters (such as density, solvent, electrical conductivity, and concentration of polymer), electrospinning parameters (such as voltage, flow rate, and distance between the needle tip and collector), and our study parameters, i.e., drug release and anticancer activity, which affect the properties of the drug-loaded nanofibers, such as the average diameter of fiber, anticancer activity, drug release percentage, and encapsulation efficiency. Our findings indicated the importance of factors like distance, polymer density, and polymer concentration, respectively, in optimizing the fabrication of drug-loaded electrospun nanofibers. The smallest diameter, highest encapsulation efficiency, highest drug release percentage, and highest anticancer activity are obtained at a molecular weight between 80 and 474 kDa and a doxorubicin concentration of at least 3.182 wt% with the polymer density in the range of 1.2-1.52 g/cm, polymer concentration of 6.618-9 wt%, and dielectric constant of solvent more than 30. Also, the optimal distance of 14-15 cm, the flow rate of 3.5-5 mL/h, and the voltage in the range of 20-25 kV result in the highest release rate, the highest encapsulation efficiency, and the lowest average diameter for fibers. Therefore, to achieve optimal conditions, these values should be considered. These findings open up new roads for future design and production of drug-loaded polymeric nanofibers with desirable properties and performances by machine learning methods.

摘要

由于电纺纳米纤维具有多种优势,多种药物已被负载于这些纳米平台中,以实现健康有效的递送。阿霉素是一种用于化疗的药物,其各种递送和疗效参数面临挑战,因此需要寻找新的递送方法。研究人员对阿霉素在纳米纤维材料中的包封进行了大量实验室研究。该方法包括纤维生产和药物负载的各种参数,可分为与设备相关、与材料相关和研究设计参数。本研究采用监督式机器学习分析,从载阿霉素电纺纳米纤维的定量数据中提取输入的影响参数。该研究还确定了每个影响输出结果的参数的显著性系数,并确定了每个参数的最佳点和区间。我们的支持向量机(SVM)分析结果表明,通过对聚合物溶液参数(如密度、溶剂、电导率和聚合物浓度)、电纺参数(如电压、流速和针尖与收集器之间的距离)以及我们的研究参数(即药物释放和抗癌活性)进行基于机器学习的研究,可以优化载阿霉素电纺纳米纤维。我们的研究结果分别表明了距离、聚合物密度和聚合物浓度等因素在优化载药电纺纳米纤维制备中的重要性。在分子量为80至474 kDa、阿霉素浓度至少为3.182 wt%、聚合物密度在1.2 - 1.52 g/cm范围内、聚合物浓度为6.618 - 9 wt%且溶剂介电常数大于30时,可获得最小直径、最高包封效率、最高药物释放百分比和最高抗癌活性。此外,14 - 15 cm的最佳距离、3.5 - 5 mL/h的流速以及20 - 25 kV的电压范围可使纤维的释放速率最高、包封效率最高且平均直径最小。因此,为实现最佳条件,应考虑这些值。这些发现为未来通过机器学习方法设计和生产具有理想性能和表现的载药聚合物纳米纤维开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60f1/11933076/41729c7fde73/fbioe-13-1493194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验