Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
ACS Nano. 2021 Oct 26;15(10):15730-15740. doi: 10.1021/acsnano.1c06204. Epub 2021 Sep 29.
The recent emergence of highly contagious respiratory disease and the underlying issues of worldwide air pollution jointly heighten the importance of the personal respirator. However, the incongruence between the dynamic environment and nonadaptive respirators imposes physiological and psychological adverse effects, which hinder the public dissemination of respirators. To address this issue, we introduce adaptive respiratory protection based on a dynamic air filter (DAF) driven by machine learning (ML) algorithms. The stretchable elastomer fiber membrane of the DAF affords immediate adjustment of filtration characteristics through active rescaling of the micropores by simple pneumatic control, enabling seamless and constructive transition of filtration characteristics. The resultant DAF-respirator (DAF-R), made possible by ML algorithms, successfully demonstrates real-time predictive adapting maneuvers, enabling personalizable and continuously optimized respiratory protection under changing circumstances.
近期高传染性呼吸道疾病的出现以及全球范围内的空气污染问题凸显了个人呼吸器的重要性。然而,动态环境与非适应性呼吸器之间的不匹配会对佩戴者造成生理和心理上的不良影响,从而阻碍了呼吸器的普及。针对这一问题,我们引入了一种基于机器学习 (ML) 算法驱动的动态空气过滤器 (DAF) 的自适应呼吸防护。DAF 的可拉伸弹性体纤维膜可通过简单的气动控制主动调整微孔径,实现过滤特性的即时调整,从而实现过滤特性的无缝和建设性转变。通过机器学习算法实现的 DAF-呼吸器 (DAF-R) 成功地展示了实时预测自适应操作,可在不断变化的环境下实现个性化和持续优化的呼吸防护。