Göktepe Yunus Emre
Computer Engineering, Necmettin Erbakan University, Konya, Turkey.
PeerJ Comput Sci. 2025 Mar 19;11:e2748. doi: 10.7717/peerj-cs.2748. eCollection 2025.
Protein-protein interactions (PPIs) are pivotal in cellular processes, influencing a wide range of functions, from metabolism to immune responses. Despite the advancements in experimental techniques for PPI detection, their inherent limitations, such as high false-positive rates and significant resource demands, necessitate the development of computational approaches. This study presents a novel computational model named MFPIC (Multi-Feature Protein Interaction Classifier) for predicting PPIs, integrating enhanced sequence-based features, including a novel spaced conjoint triad (SCT) and amino acid pairwise distance (AAPD), with existing methods such as position-specific scoring matrices (PSSM) and AAindex-based features. The SCT captures complex sequence motifs by considering non-adjacent amino acid interactions, while AAPD provides critical spatial information about amino acid residues within protein sequences. The proposed model was evaluated across three benchmark datasets-, , and human proteins-demonstrating superior performance in comparison to state-of-the-art models. The results underscore the efficacy of integrating diverse and complementary features, achieving significant improvements in predictive accuracy, with the model achieving 95.90%, 99.33%, and 90.95% accuracy on the , , and human dataset, respectively. This approach not only enhances our understanding of PPI mechanisms but also offers valuable insights for the development of targeted therapeutic strategies.
蛋白质-蛋白质相互作用(PPIs)在细胞过程中起着关键作用,影响着从新陈代谢到免疫反应等广泛的功能。尽管用于检测PPIs的实验技术取得了进展,但其固有的局限性,如高假阳性率和巨大的资源需求,使得开发计算方法成为必要。本研究提出了一种名为MFPIC(多特征蛋白质相互作用分类器)的新型计算模型,用于预测PPIs,该模型将增强的基于序列的特征,包括一种新型间隔联合三联体(SCT)和氨基酸成对距离(AAPD),与现有方法如位置特异性评分矩阵(PSSM)和基于AAindex的特征相结合。SCT通过考虑非相邻氨基酸相互作用来捕获复杂的序列基序,而AAPD提供了关于蛋白质序列中氨基酸残基的关键空间信息。在三个基准数据集——、和人类蛋白质数据集上对所提出的模型进行了评估,结果表明该模型与现有最先进模型相比具有卓越的性能。结果强调了整合多样且互补特征的有效性,在预测准确性方面取得了显著提高,该模型在、和人类数据集上的准确率分别达到了95.90%、99.33%和90.95%。这种方法不仅增强了我们对PPI机制的理解,还为靶向治疗策略的开发提供了有价值的见解。