Suppr超能文献

利用具有间隔联合三联体和氨基酸成对距离的增强特征进行蛋白质-蛋白质相互作用预测。

Protein-protein interaction prediction using enhanced features with spaced conjoint triad and amino acid pairwise distance.

作者信息

Göktepe Yunus Emre

机构信息

Computer Engineering, Necmettin Erbakan University, Konya, Turkey.

出版信息

PeerJ Comput Sci. 2025 Mar 19;11:e2748. doi: 10.7717/peerj-cs.2748. eCollection 2025.

Abstract

Protein-protein interactions (PPIs) are pivotal in cellular processes, influencing a wide range of functions, from metabolism to immune responses. Despite the advancements in experimental techniques for PPI detection, their inherent limitations, such as high false-positive rates and significant resource demands, necessitate the development of computational approaches. This study presents a novel computational model named MFPIC (Multi-Feature Protein Interaction Classifier) for predicting PPIs, integrating enhanced sequence-based features, including a novel spaced conjoint triad (SCT) and amino acid pairwise distance (AAPD), with existing methods such as position-specific scoring matrices (PSSM) and AAindex-based features. The SCT captures complex sequence motifs by considering non-adjacent amino acid interactions, while AAPD provides critical spatial information about amino acid residues within protein sequences. The proposed model was evaluated across three benchmark datasets-, , and human proteins-demonstrating superior performance in comparison to state-of-the-art models. The results underscore the efficacy of integrating diverse and complementary features, achieving significant improvements in predictive accuracy, with the model achieving 95.90%, 99.33%, and 90.95% accuracy on the , , and human dataset, respectively. This approach not only enhances our understanding of PPI mechanisms but also offers valuable insights for the development of targeted therapeutic strategies.

摘要

蛋白质-蛋白质相互作用(PPIs)在细胞过程中起着关键作用,影响着从新陈代谢到免疫反应等广泛的功能。尽管用于检测PPIs的实验技术取得了进展,但其固有的局限性,如高假阳性率和巨大的资源需求,使得开发计算方法成为必要。本研究提出了一种名为MFPIC(多特征蛋白质相互作用分类器)的新型计算模型,用于预测PPIs,该模型将增强的基于序列的特征,包括一种新型间隔联合三联体(SCT)和氨基酸成对距离(AAPD),与现有方法如位置特异性评分矩阵(PSSM)和基于AAindex的特征相结合。SCT通过考虑非相邻氨基酸相互作用来捕获复杂的序列基序,而AAPD提供了关于蛋白质序列中氨基酸残基的关键空间信息。在三个基准数据集——、和人类蛋白质数据集上对所提出的模型进行了评估,结果表明该模型与现有最先进模型相比具有卓越的性能。结果强调了整合多样且互补特征的有效性,在预测准确性方面取得了显著提高,该模型在、和人类数据集上的准确率分别达到了95.90%、99.33%和90.95%。这种方法不仅增强了我们对PPI机制的理解,还为靶向治疗策略的开发提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb6/11935777/73f3fca82f5d/peerj-cs-11-2748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验