Feng Zijian, Huang Weihong, Li Haohao, Zhu Hancan, Kang Yanlei, Li Zhong
Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources, School of Information Engineering, Huzhou University, Huzhou, 313000, Zhejiang, China.
College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
BMC Bioinformatics. 2024 Jul 31;25(1):252. doi: 10.1186/s12859-024-05864-w.
Proteins play a pivotal role in the diverse array of biological processes, making the precise prediction of protein-protein interaction (PPI) sites critical to numerous disciplines including biology, medicine and pharmacy. While deep learning methods have progressively been implemented for the prediction of PPI sites within proteins, the task of enhancing their predictive performance remains an arduous challenge.
In this paper, we propose a novel PPI site prediction model (DGCPPISP) based on a dynamic graph convolutional neural network and a two-stage transfer learning strategy. Initially, we implement the transfer learning from dual perspectives, namely feature input and model training that serve to supply efficacious prior knowledge for our model. Subsequently, we construct a network designed for the second stage of training, which is built on the foundation of dynamic graph convolution.
To evaluate its effectiveness, the performance of the DGCPPISP model is scrutinized using two benchmark datasets. The ensuing results demonstrate that DGCPPISP outshines competing methods in terms of performance. Specifically, DGCPPISP surpasses the second-best method, EGRET, by margins of 5.9%, 10.1%, and 13.3% for F1-measure, AUPRC, and MCC metrics respectively on Dset_186_72_PDB164. Similarly, on Dset_331, it eclipses the performance of the runner-up method, HN-PPISP, by 14.5%, 19.8%, and 29.9% respectively.
蛋白质在各种各样的生物过程中起着关键作用,因此蛋白质-蛋白质相互作用(PPI)位点的精确预测对包括生物学、医学和药学在内的众多学科至关重要。虽然深度学习方法已逐渐用于预测蛋白质中的PPI位点,但提高其预测性能的任务仍然是一项艰巨的挑战。
在本文中,我们提出了一种基于动态图卷积神经网络和两阶段迁移学习策略的新型PPI位点预测模型(DGCPPISP)。首先,我们从特征输入和模型训练这两个双重角度实施迁移学习,这为我们的模型提供了有效的先验知识。随后,我们构建了一个用于第二阶段训练的网络,该网络基于动态图卷积构建。
为了评估其有效性,我们使用两个基准数据集对DGCPPISP模型的性能进行了仔细审查。随后的结果表明,DGCPPISP在性能方面优于竞争方法。具体而言,在Dset_186_72_PDB164数据集上,DGCPPISP在F1值、AUPRC和MCC指标上分别比第二好的方法EGRET高出5.9%、10.1%和13.3%。同样,在Dset_331数据集上,它分别比排名第二的方法HN-PPISP的性能高出14.5%、19.8%和29.9%。