Suppr超能文献

使用深度去噪自动编码器和进化信息预测与心血管疾病相关的微生物中的蛋白质-蛋白质相互作用。

Predicting protein-protein interactions in microbes associated with cardiovascular diseases using deep denoising autoencoders and evolutionary information.

作者信息

Zhou Senyu, Luo Jian, Tang Mei, Li Chaojun, Li Yang, He Wenhua

机构信息

Cardiovascular Department, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, China.

School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China.

出版信息

Front Pharmacol. 2025 Mar 11;16:1565860. doi: 10.3389/fphar.2025.1565860. eCollection 2025.

Abstract

INTRODUCTION

Protein-protein interactions (PPIs) are critical for understanding the molecular mechanisms underlying various biological processes, particularly in microbes associated with cardiovascular disease. Traditional experimental methods for detecting PPIs are often time-consuming and costly, leading to an urgent need for reliable computational approaches.

METHODS

In this study, we present a novel model, the deep denoising autoencoder for protein-protein interaction (DAEPPI), which leverages the denoising autoencoder and the CatBoost algorithm to predict PPIs from the evolutionary information of protein sequences.

RESULTS

Our extensive experiments demonstrate the effectiveness of the DAEPPI model, achieving average prediction accuracies of 97.85% and 98.49% on yeast and human datasets, respectively. Comparative analyses with existing effective methods further validate the robustness and reliability of our model in predicting PPIs.

DISCUSSION

Additionally, we explore the application of DAEPPI in the context of cardiovascular disease, showcasing its potential to uncover significant interactions that could contribute to the understanding of disease mechanisms. Our findings indicate that DAEPPI is a powerful tool for advancing research in proteomics and could play a pivotal role in the identification of novel therapeutic targets in cardiovascular disease.

摘要

引言

蛋白质-蛋白质相互作用(PPIs)对于理解各种生物过程背后的分子机制至关重要,尤其是在与心血管疾病相关的微生物中。传统的检测PPIs的实验方法通常既耗时又昂贵,这使得迫切需要可靠的计算方法。

方法

在本研究中,我们提出了一种新型模型,即用于蛋白质-蛋白质相互作用的深度去噪自动编码器(DAEPPI),它利用去噪自动编码器和CatBoost算法从蛋白质序列的进化信息中预测PPIs。

结果

我们广泛的实验证明了DAEPPI模型的有效性,在酵母和人类数据集上分别实现了97.85%和98.49%的平均预测准确率。与现有有效方法的比较分析进一步验证了我们的模型在预测PPIs方面的稳健性和可靠性。

讨论

此外,我们探讨了DAEPPI在心血管疾病背景下的应用,展示了其揭示可能有助于理解疾病机制的重要相互作用的潜力。我们的研究结果表明,DAEPPI是推进蛋白质组学研究的有力工具,并且在识别心血管疾病的新型治疗靶点方面可能发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7da/11932980/f67cd48b7e2f/fphar-16-1565860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验