Suppr超能文献

基于改进的深度自编码器特征提取的分类方法用于丙型肝炎预测的有效性研究。

Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction.

作者信息

Zhang Lin, Wang Jixin, Chang Rui, Wang Weigang

机构信息

Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China.

Department of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, China.

出版信息

Sci Rep. 2024 Apr 21;14(1):9143. doi: 10.1038/s41598-024-59785-y.

Abstract

Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.

摘要

丙型肝炎是由丙型肝炎病毒(HCV)感染引起的一种特别危险的病毒性肝炎形式,是一个重大的社会经济和公共卫生问题。由于深度学习的快速发展,将深度学习应用于医疗行业以提高疾病识别的有效性和准确性已成为一种常见做法。为了提高丙型肝炎检测的有效性和准确性,本研究提出了一种改进的去噪自编码器(IDAE)并将其应用于丙型肝炎疾病检测。传统的去噪自编码器在编码器的输入层引入随机噪声。然而,由于这些特征的存在,直接添加随机噪声的编码器可能会掩盖数据的某些内在属性,使得学习更深层次的特征具有挑战性。在本研究中,通过将残差神经网络的概念纳入增强型去噪自编码器,解决了传统去噪自动编码中数据信息丢失的问题。在我们的实验研究中,我们将这种增强型去噪自编码器应用于开源丙型肝炎数据集,结果在特征提取方面显示出显著效果。虽然现有的基线机器学习方法准确率低于90%,集成算法和传统自编码器的正确率仅为95%,但改进后的IDAE在下游丙型肝炎分类任务中达到了99%的准确率,比单一算法提高了9%,比集成算法和其他自编码器提高了近4%。上述结果表明,IDAE可以有效地捕获关键疾病特征,提高丙型肝炎数据中疾病预测的准确性。这表明IDAE有潜力广泛应用于丙型肝炎及类似疾病的检测和管理,特别是在预警系统的开发、病情预测和个性化治疗策略方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d12/11033254/8b912abdc304/41598_2024_59785_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验