Lin Chia-Yi, Teng Ting-An, Chang Haw-Kai, Chen Po-Yu
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
Instrumentation Center, National Tsing Hua University, Hsinchu 300044, Taiwan.
Biomimetics (Basel). 2025 Feb 26;10(3):143. doi: 10.3390/biomimetics10030143.
Freshwater resources that humans can use directly account for 2.5 percent. Fog collection from the atmosphere is an eco-friendly and potential solution to the water shortage crisis. This study presents a biomimetic approach to fog collection inspired by the Namib Desert beetle and cacti. Using fused deposition modeling (FDM) 3D printing and atmospheric pressure plasma (APP) treatment, we fabricated hybrid wettability surfaces combining hydrophobic polypropylene (PP) and super hydrophilic polycarbonate (PC). These surfaces significantly improved fog collection efficiency, achieving 366.2 g/m/h rates by leveraging the Laplace pressure gradient and hybrid wettability gradient. This work provides an efficient and effective methodology to fabricate hybrid wetting surfaces and can be potentially applied to fog harvesting and microfluidic devices.
人类可直接利用的淡水资源仅占2.5%。从大气中收集雾气是一种生态友好且具有潜力的解决水资源短缺危机的方法。本研究提出了一种受纳米比亚沙漠甲虫和仙人掌启发的仿生雾气收集方法。通过熔融沉积建模(FDM)3D打印和大气压等离子体(APP)处理,我们制备了结合疏水性聚丙烯(PP)和超亲水性聚碳酸酯(PC)的混合润湿性表面。这些表面显著提高了雾气收集效率,通过利用拉普拉斯压力梯度和混合润湿性梯度,实现了366.2克/平方米/小时的收集速率。这项工作提供了一种高效且有效的制造混合润湿表面的方法,并有可能应用于雾气收集和微流控设备。