Luo Jiaxin, Wang Jiacheng, Chen Zhaoyu, Yuan Ruduan, Cheng Chong, Xue Guanfeng, Wang Jinshuai, Wang Kaixin, Shi Wanyuan, Xiao Juanxiu, Sun Kuan, Li Meng
National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China.
State Key Laboratory of Marine Resources Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
J Colloid Interface Sci. 2025 Sep;693:137653. doi: 10.1016/j.jcis.2025.137653. Epub 2025 Apr 19.
The global freshwater crisis poses a substantial threat to sustainable development, driving urgent demand for advanced atmospheric water harvesting technologies. While bio-inspired fog collectors have shown potential, conventional single-scale architectures often exhibit suboptimal performance due to inadequate coordination between droplet nucleation and transport. Here we present a multi-object-coupled venation-shaped patterned surface (MVSS) fabricated through laser-etching of filter paper/polydimethylsiloxane composite films. By synergistically integrating three bio-inspired mechanisms: (i) heterogeneous wettability patterns mimicking desert beetle elytra, (ii) conical spine arrays inspired by Opuntia histophysiology, and (iii) hierarchical venation networks derived from plant leaf, we establish a multi-stage phase-transition process that enhances fog harvesting efficiency through coordinated surface energy gradients and Laplace pressure modulation. The wettability contrast enables selective droplet nucleation, while the conical geometry generates asymmetric contact line pinning that drives directional transport. The hierarchical branching network minimizes hydraulic resistance through optimized flow path partitioning, achieving rapid drainage while suppressing edge water accumulation. This multi-scale synergy yields a record water collection rate of 1033 ± 28.2 mg cm h. Our findings elucidate the critical role of structure-property coordination in fog water collection, providing a generalized design paradigm for developing high-efficiency atmospheric water harvesters. The fabrication strategy combining scalable laser processing with bio-composite materials suggests promising pathways for arid region deployment.
全球淡水危机对可持续发展构成了重大威胁,促使人们迫切需要先进的大气取水技术。虽然受生物启发的雾收集器已显示出潜力,但传统的单尺度结构由于液滴成核与传输之间的协调不足,往往表现出次优性能。在此,我们展示了一种通过对滤纸/聚二甲基硅氧烷复合膜进行激光蚀刻制备的多目标耦合叶脉状图案表面(MVSS)。通过协同整合三种受生物启发的机制:(i)模仿沙漠甲虫鞘翅的异质润湿性图案,(ii)受仙人掌组织生理学启发的锥形刺阵列,以及(iii)源自植物叶片的分级叶脉网络,我们建立了一个多阶段相变过程,通过协调表面能梯度和拉普拉斯压力调制来提高雾收集效率。润湿性差异实现了选择性液滴成核,而锥形几何结构产生不对称的接触线钉扎,驱动定向传输。分级分支网络通过优化流路划分将水力阻力降至最低,实现快速排水同时抑制边缘水积聚。这种多尺度协同作用产生了创纪录的集水速率,为1033±28.2毫克·厘米·小时。我们的研究结果阐明了结构 - 性能协调在雾水收集中的关键作用,为开发高效大气取水器提供了一种通用的设计范式。将可扩展激光加工与生物复合材料相结合的制造策略为干旱地区的应用提供了有前景的途径。