Liu Haibo, Yao Kaiyuan, Hu Min, Li Shanting, Yang Shengxiong, Zhao Anshun
Technology Inspection Center of ShengLi Oil Filed, China Petrochemical Corporation, Dongying 257000, China.
Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China.
Nanomaterials (Basel). 2025 Mar 8;15(6):417. doi: 10.3390/nano15060417.
In this work, we developed 3D ionic liquid (IL) functionalized graphene assemblies (GAs) decorated by ultrafine RuCu alloy nanoparticles (RuCu-ANPs) via a one-step synthesis process, and integrated it into a microfluidic sensor chip for in situ electrochemical detection of NO released from living cells. Our findings have demonstrated that RuCu-ANPs on 3D IL-GA exhibit high density, uniform distribution, lattice-shaped arrangement of atoms, and extremely ultrafine size, and possess high electrocatalytic activity to NO oxidation on the electrode. Meanwhile, the 3D IL-GA with hierarchical porous structures can facilitate the efficient electron/mass transfer at the electrode/electrolyte interface and the cell culture. Moreover, the graft of IL molecules on GA endows it with high hydrophilicity for facile and well-controllable printing on the electrode. Consequently, the resultant electrochemical microfluidic sensor demonstrated excellent sensing performances including fast response time, high sensitivity, good anti-interference ability, high reproducibility, long-term stability, as well as good biocompatibility, which can be used as an on-chip sensing system for cell culture and real-time in situ electrochemical detection of NO released from living cells with accurate and stable characteristics in physiological conditions.
在本工作中,我们通过一步合成法制备了由超细钌铜合金纳米颗粒(RuCu-ANPs)修饰的3D离子液体(IL)功能化石墨烯组件(GAs),并将其集成到微流控传感器芯片中,用于原位电化学检测活细胞释放的一氧化氮(NO)。我们的研究结果表明,3D IL-GA上的RuCu-ANPs具有高密度、均匀分布、原子晶格状排列以及极超细尺寸,并且对电极上NO的氧化具有高电催化活性。同时,具有分级多孔结构的3D IL-GA能够促进电极/电解质界面处的高效电子/质量传递以及细胞培养。此外,IL分子接枝到GA上赋予其高亲水性,便于在电极上进行简便且可控的打印。因此,所得的电化学微流控传感器表现出优异的传感性能,包括快速响应时间、高灵敏度、良好的抗干扰能力、高重现性、长期稳定性以及良好的生物相容性,可作为用于细胞培养和实时原位电化学检测活细胞释放的NO的片上传感系统,在生理条件下具有准确且稳定的特性。