Bae Kangho, Song Chang-Keun, Van Roozendael Michel, Richter Andreas, Wagner Thomas, Merlaud Alexis, Pinardi Gaia, Friedrich Martina M, Fayt Caroline, Dimitropoulou Ermioni, Lange Kezia, Bösch Tim, Zilker Bianca, Latsch Miriam, Behrens Lisa K, Ziegler Steffen, Ripperger-Lukosiunaite Simona, Kuhn Leon, Lauster Bianca, Reischmann Lucas, Uhlmannsiek Katharina, Cede Alexander, Tiefengraber Martin, Gebetsberger Manuel, Park Rokjin J, Lee Hanlim, Hong Hyunkee, Chang Lim-Seok, Jeon Kwonho
Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Research & Management Center for Particulate Matters at the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Research & Management Center for Particulate Matters at the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
Sci Total Environ. 2025 Apr 25;974:179190. doi: 10.1016/j.scitotenv.2025.179190. Epub 2025 Mar 25.
The Geostationary Environmental Monitoring Spectrometer (GEMS), the first geostationary air quality instrument, onboard the GEO-KOMPSAT-2B (GK2B) satellite, produces hourly observations over Asia with 3.5 km × 8 km spatial resolution. To evaluate the GEMS L2 products, the National Institute of Environmental Research (NIER) organized the GEMS Map of Air Pollutants 2021 (GMAP2021) and the Satellite Integrated Joint monitoring of Air Quality 2022 (SIJAQ2022) campaigns during October 2021 to November 2021 and from June 2022 to July 2022, respectively. While GMAP2021 mainly targeted the SMA (Seoul Metropolitan Area), the SIJAQ2022 campaign extended to the southeastern area of South Korea. In this study, a comparison between Pandora and Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) products and an evaluation of the GEMS operational v2.0 total column NO and HCHO products are conducted. A comparative analysis between the Pandora (P189) and the IUP Bremen MAX-DOAS instrument at the Incheon NIER-ESC site was performed to analyze discrepancies between the retrieval processors (Pandora: PGN official processor, MAX-DOAS: MMF in FRMDOAS framework). Aligning the viewing directions of both Pandora and MAX-DOAS leads to a significant increase in the slope and correlation coefficient from 0.87 to 0.96 and from 0.86 to 0.96, respectively, in the case of NO tropospheric columns. Similarly, for HCHO tropospheric columns, slope and correlation coefficient change from 0.94 to 1.09 and from 0.81 to 0.90 when matching the viewing geometries of both instruments. In contrast to tropospheric columns, total HCHO columns derived from Pandora (P189) direct-sun measurements show significantly larger values than the MAX-DOAS ones, with a mean relative difference (MRD) of 126 %. This bias can however be reduced to 33 % after suitable adjustment of the direct-sun retrieval settings. The GEMS v2.0 NO total column product, evaluated over 6 official PGN sites in South Korea, shows good agreement with a correlation coefficient of 0.87 and similar seasonal and diurnal NO variation. However, GEMS tends to report higher values than Pandora with a mean relative difference of +41 %. The magnitude of the GEMS overestimation is amplified in highly polluted conditions (i.e. during winter and at noontime). Compared to 6 MAX-DOAS stations and 6 Pandora stations, the GEMS HCHO product captures well the seasonal and diurnal variation of HCHO and shows good agreement both with MAX-DOAS and Pandora with slopes of 0.84 and 0.79, respectively, and correlation coefficients of 0.86 for both. Large columns, however, tend to be systematically underestimated.
地球静止环境监测光谱仪(GEMS)是首个搭载在GEO-KOMPSAT-2B(GK2B)卫星上的地球静止空气质量仪器,它以3.5千米×8千米的空间分辨率对亚洲地区进行每小时一次的观测。为了评估GEMS二级产品,韩国国家环境研究所(NIER)分别在2021年10月至2021年11月以及2022年6月至2022年7月期间组织了2021年GEMS空气污染物地图(GMAP2021)和2022年卫星空气质量综合联合监测(SIJAQ2022)活动。GMAP2021主要针对首尔大都市区(SMA),而SIJAQ2022活动则扩展到了韩国东南部地区。在本研究中,对潘多拉(Pandora)和多轴差分光学吸收光谱仪(MAX-DOAS)的产品进行了比较,并对GEMS业务v2.0的总柱NO和HCHO产品进行了评估。在仁川NIER-ESC站点对潘多拉(P189)和不来梅大学的IUP MAX-DOAS仪器进行了对比分析,以分析反演处理器(潘多拉:PGN官方处理器,MAX-DOAS:FRMDOAS框架中的MMF)之间的差异。在对流层NO柱的情况下,将潘多拉和MAX-DOAS的观测方向对齐后,斜率和相关系数分别从0.87显著增加到0.96以及从0.86显著增加到0.96。同样,对于对流层HCHO柱,当匹配两种仪器的观测几何结构时,斜率和相关系数分别从0.94变为1.09以及从0.81变为0.90。与对流层柱不同,潘多拉(P189)直接太阳测量得出的总HCHO柱显示出的值明显大于MAX-DOAS得出的值,平均相对差异(MRD)为126%。然而,在对直接太阳反演设置进行适当调整后,这种偏差可降至33%。在韩国的6个官方PGN站点对GEMS v2.0的NO总柱产品进行评估时,其相关系数为0.87,显示出良好的一致性,且NO的季节和日变化相似。然而,GEMS报告的值往往比潘多拉的值高,平均相对差异为+41%。在高污染条件下(即冬季和中午),GEMS高估的幅度会放大。与6个MAX-DOAS站点和6个潘多拉站点相比,GEMS的HCHO产品很好地捕捉到了HCHO的季节和日变化,与MAX-DOAS和潘多拉都显示出良好的一致性,斜率分别为0.84和0.79,相关系数均为0.86。然而,大柱值往往会被系统地低估。