Judd Laura M, Al-Saadi Jassim A, Janz Scott J, Kowalewski Matthew G, Pierce R Bradley, Szykman James J, Valin Lukas C, Swap Robert, Cede Alexander, Mueller Moritz, Tiefengraber Martin, Abuhassan Nader, Williams David
NASA Langley Research Center, Hampton, VA, 23681, United States.
NASA Postdoctoral Program, Hampton, VA, 23681, United States.
Atmos Meas Tech. 2019 Nov;12(11):6091-6111. doi: 10.5194/amt-12-6091-2019. Epub 2019 Nov 22.
NASA deployed the GeoTASO airborne UV-Visible spectrometer in May-June 2017 to produce high resolution (approximately 250 × 250 m) gapless NO datasets over the western shore of Lake Michigan and over the Los Angeles Basin. The results collected show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO observations (r=0.91 and slope of 1.03). Apparent disagreements between the two measurements can be sensitive to the coincidence criteria and are often associated with large local variability, including rapid temporal changes and spatial heterogeneity that may be observed differently by the sunward viewing Pandora observations. The gapless mapping strategy executed during the 2017 GeoTASO flights provides data suitable for averaging to coarser areal resolutions to simulate satellite retrievals. As simulated satellite pixel area increases to values typical of TEMPO, TROPOMI, and OMI, the agreement with Pandora measurements degraded, particularly for the most polluted columns as localized large pollution enhancements observed by Pandora and GeoTASO are spatially averaged with nearby less-polluted locations within the larger area representative of the satellite spatial resolutions (aircraft-to-Pandora slope: TEMPO scale=0.88; TROPOMI scale=0.77; OMI scale=0.57). In these two regions, Pandora and TEMPO or TROPOMI have the potential to compare well at least up to pollution scales of 30×10 molecules cm. Two publicly available OMI tropospheric NO retrievals are both found to be biased low with respect to these Pandora observations. However, the agreement improves when higher resolution a priori inputs are used for the tropospheric air mass factor calculation (NASA V3 Standard Product slope = 0.18 and Berkeley High Resolution Product slope=0.30). Overall, this work explores best practices for satellite validation strategies with Pandora direct-sun observations by showing the sensitivity to product spatial resolution and demonstrating how the high spatial resolution NO data retrieved from airborne spectrometers, such as GeoTASO, can be used with high temporal resolution ground-based column observations to evaluate the influence of spatial heterogeneity on validation results.
美国国家航空航天局(NASA)于2017年5月至6月部署了地球大气痕量气体和气溶胶光谱观测(GeoTASO)机载紫外-可见光谱仪,以在密歇根湖西岸和洛杉矶盆地生成高分辨率(约250×250米)的无缝隙一氧化氮(NO)数据集。收集到的结果表明,机载对流层垂直柱反演结果与地面潘多拉光谱仪柱NO观测结果比较吻合(r = 0.91,斜率为1.03)。两种测量之间明显的差异可能对重合标准敏感,并且通常与较大的局部变异性有关,包括快速的时间变化和空间异质性,这些可能在向阳观测的潘多拉观测中被不同地观测到。2017年GeoTASO飞行期间执行的无缝隙测绘策略提供了适合平均到更粗区域分辨率以模拟卫星反演的数据。随着模拟卫星像素面积增加到对流层污染监测仪(TEMPO)、对流层监测仪(TROPOMI)和臭氧监测仪(OMI)的典型值,与潘多拉测量的一致性下降,特别是对于污染最严重的柱,因为潘多拉和GeoTASO观测到的局部大污染增强在代表卫星空间分辨率的更大区域内与附近污染较轻的位置进行了空间平均(飞机到潘多拉斜率:TEMPO尺度 = 0.88;TROPOMI尺度 = 0.77;OMI尺度 = 0.57)。在这两个区域,潘多拉和TEMPO或TROPOMI至少在污染尺度达到30×10分子/立方厘米时有可能比较吻合。发现两个公开可用的OMI对流层NO反演结果相对于这些潘多拉观测都存在偏低偏差。然而,当使用更高分辨率的先验输入进行对流层空气质量因子计算时,一致性得到改善(NASA V3标准产品斜率 = 0.18,伯克利高分辨率产品斜率 = 0.30)。总体而言