Suppr超能文献

PLAGCA:利用图交叉注意力机制预测蛋白质-配体结合亲和力

PLAGCA: Predicting protein-ligand binding affinity with the graph cross-attention mechanism.

作者信息

Shi Ming-Hui, Zhang Shao-Wu, Zhang Qing-Qing, Han Yong, Zhang Shanwen

机构信息

MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xian 710072, China.

MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xian 710072, China.

出版信息

J Biomed Inform. 2025 May;165:104816. doi: 10.1016/j.jbi.2025.104816. Epub 2025 Mar 24.

Abstract

Accurate prediction of protein-ligand binding affinity plays a crucial role in drug discovery. However, determining the binding affinity of protein-ligands through biological experimental approaches is both time-consuming and expensive. Although some computational methods have been developed to predict protein-ligands binding affinity, most existing methods extract the global features of proteins and ligands through separate encoders, without considering to extract the local pocket interaction features of protein-ligand complexes, resulting in the limited prediction accuracy. In this work, we proposed a novel Protein-Ligand binding Affinity prediction method (named PLAGCA) by introducing Graph Cross-Attention mechanism to learn the local three-dimensional (3D) features of protein-ligand pockets, and integrating the global sequence/string features and local graph interaction features of protein-ligand complexes. PLAGCA uses sequence encoding and self-attention to extract the protein/ligand global features from protein FASTA sequences/ligand SMILES strings, adopts graph neural network and cross-attention to extract the protein-ligand local interaction features from the molecular structures of protein binding pockets and ligands. All these features are concatenated and input into a multi-layer perceptron (MLP) for predicting the protein-ligand binding affinity. The experimental results show that our PLAGCA outperforms other state-of-the-art computational methods, and it can effectively predict protein-ligand binding affinity with superior generalization capability. PLAGCA can capture the critical functional residues that are important contribution to the protein-ligand binding.

摘要

准确预测蛋白质 - 配体结合亲和力在药物发现中起着至关重要的作用。然而,通过生物学实验方法确定蛋白质 - 配体的结合亲和力既耗时又昂贵。尽管已经开发了一些计算方法来预测蛋白质 - 配体结合亲和力,但大多数现有方法通过单独的编码器提取蛋白质和配体的全局特征,而没有考虑提取蛋白质 - 配体复合物的局部口袋相互作用特征,导致预测准确性有限。在这项工作中,我们提出了一种新颖的蛋白质 - 配体结合亲和力预测方法(名为PLAGCA),通过引入图交叉注意力机制来学习蛋白质 - 配体口袋的局部三维(3D)特征,并整合蛋白质 - 配体复合物的全局序列/字符串特征和局部图相互作用特征。PLAGCA使用序列编码和自注意力从蛋白质FASTA序列/配体SMILES字符串中提取蛋白质/配体全局特征,采用图神经网络和交叉注意力从蛋白质结合口袋和配体的分子结构中提取蛋白质 - 配体局部相互作用特征。所有这些特征被连接起来并输入到多层感知器(MLP)中以预测蛋白质 - 配体结合亲和力。实验结果表明,我们的PLAGCA优于其他现有的计算方法,并且它可以有效地预测蛋白质 - 配体结合亲和力,具有卓越的泛化能力。PLAGCA可以捕获对蛋白质 - 配体结合有重要贡献的关键功能残基。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验