Suppr超能文献

ERL-ProLiGraph:用于结合亲和力预测的蛋白质-配体图结构数据的增强表示学习

ERL-ProLiGraph: Enhanced representation learning on protein-ligand graph structured data for binding affinity prediction.

作者信息

Paendong Gloria Geine, Ngnamsie Njimbouom Soualihou, Zonyfar Candra, Kim Jeong-Dong

机构信息

Department of Computer Science and Electronics Engineering, Sun Moon University, Chungcheongnam-do, Korea.

Department of Computer Science and Engineering, Sun Moon University, Chungcheongnam-do, Korea.

出版信息

Mol Inform. 2024 Dec;43(12):e202400044. doi: 10.1002/minf.202400044. Epub 2024 Oct 15.

Abstract

Predicting Protein-Ligand Binding Affinity (PLBA) is pivotal in drug development, as accurate estimations of PLBA expedite the identification of promising drug candidates for specific targets, thereby accelerating the drug discovery process. Despite substantial advancements in PLBA prediction, developing an efficient and more accurate method remains non-trivial. Unlike previous computer-aid PLBA studies which primarily using ligand SMILES and protein sequences represented as strings, this research introduces a Deep Learning-based method, the Enhanced Representation Learning on Protein-Ligand Graph Structured data for Binding Affinity Prediction (ERL-ProLiGraph). The unique aspect of this method is the use of graph representations for both proteins and ligands, intending to learn structural information continued from both to enhance the accuracy of PLBA predictions. In these graphs, nodes represent atomic structures, while edges depict chemical bonds and spatial relationship. The proposed model, leveraging deep-learning algorithms, effectively learns to correlate these graphical representations with binding affinities. This graph-based representations approach enhances the model's ability to capture the complex molecular interactions critical in PLBA. This work represents a promising advancement in computational techniques for protein-ligand binding prediction, offering a potential path toward more efficient and accurate predictions in drug development. Comparative analysis indicates that the proposed ERL-ProLiGraph outperforms previous models, showcasing notable efficacy and providing a more suitable approach for accurate PLBA predictions.

摘要

预测蛋白质-配体结合亲和力(PLBA)在药物开发中至关重要,因为对PLBA的准确估计有助于加快针对特定靶点的有前景药物候选物的识别,从而加速药物发现过程。尽管PLBA预测取得了重大进展,但开发一种高效且更准确的方法仍然并非易事。与以往主要使用表示为字符串的配体SMILES和蛋白质序列的计算机辅助PLBA研究不同,本研究引入了一种基于深度学习的方法,即用于结合亲和力预测的蛋白质-配体图结构数据增强表示学习(ERL-ProLiGraph)。该方法的独特之处在于对蛋白质和配体都使用图表示,旨在从两者中学习延续的结构信息以提高PLBA预测的准确性。在这些图中,节点表示原子结构,而边描绘化学键和空间关系。所提出的模型利用深度学习算法,有效地学习将这些图形表示与结合亲和力相关联。这种基于图的表示方法增强了模型捕捉PLBA中关键复杂分子相互作用的能力。这项工作代表了蛋白质-配体结合预测计算技术的一项有前景的进展,为药物开发中更高效准确的预测提供了一条潜在途径。对比分析表明,所提出的ERL-ProLiGraph优于先前的模型,展现出显著的功效,并为准确的PLBA预测提供了一种更合适的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1350/11639045/24c9d6ea79d8/MINF-43-e202400044-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验