McKinnon C, Mo C, Sherman S M
Committee on Computational Neuroscience, University of Chicago, Illinois, USA.
Department of Neurobiology, University of Chicago, Illinois, USA.
J Neurosci. 2025 Mar 26;45(18). doi: 10.1523/JNEUROSCI.0002-25.2025.
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice of both sexes performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making. Appreciation of pathways for transthalamic communication between cortical areas, organized in parallel with direct connections, has transformed our thinking about cortical functioning writ large. Studies of transthalamic pathways initially concentrated on their anatomy and physiology, but there has been a shift towards understanding their importance to cognitive behavior. Here, we have used an optogenetic approach in mice to selectively inhibit the transthalamic pathway from primary visual cortex to other cortical areas and back to itself. We find that such inhibition degrades the animals' ability to discriminate, showing for the first time that specific inhibition of visual transthalamic circuitry reduces visual discrimination. This causal data adds to the growing evidence for the importance of transthalamic signaling in perceptual processing.
皮层第5层(L5)向高级丘脑核团提供强大的驱动输入,比如视觉系统中的丘脑枕,从而形成皮质-丘脑-皮质(经丘脑)回路的基础。这些回路在与直接的皮质-皮质连接并行的情况下,为皮质区域之间提供了一条通信途径,但其在感知和行为中的具体作用仍不清楚。在执行视觉辨别任务的雌雄小鼠中使用靶向光遗传学抑制,我们在丘脑枕的终末选择性地抑制了初级视觉皮层(V1)中L5细胞的皮质丘脑输入。这抑制了来自V1的经丘脑回路;此外,对直接皮质-皮质投射和局部V1回路的任何影响都将因此由经丘脑输入导致(例如,V1到丘脑枕再回到V1(米勒-汉森和谢尔曼,2022年))。在呈现漂移光栅的视觉刺激期间对经丘脑处理的这种抑制显著损害了不同方向上的辨别性能。对行为的影响特定于在视网膜拓扑上与V1 L5皮质丘脑抑制相一致的视觉空间部分。这些结果突出了将L5起始的经丘脑回路纳入皮质处理框架的重要性,特别是那些涉及感觉信号的层级传播如何支持感知决策的框架。对与直接连接并行组织的皮质区域之间经丘脑通信途径的认识,已经从总体上改变了我们对皮质功能的看法。对经丘脑通路的研究最初集中在其解剖学和生理学上,但现在已经转向理解它们对认知行为的重要性。在这里,我们在小鼠中使用光遗传学方法选择性地抑制从初级视觉皮层到其他皮质区域再回到其自身的经丘脑通路。我们发现这种抑制会降低动物的辨别能力,首次表明对视觉经丘脑回路的特异性抑制会降低视觉辨别能力。这一因果数据为经丘脑信号在感知处理中的重要性提供了越来越多的证据。