Bakera Alice Titus, Aboulela Amr, Alexander Mark G, Bertron Alexandra, Peyre Lavigne Matthieu, Meulenyzer Samuel, Patapy Cédric
Department of Civil Engineering, University of Cape Town, Rondebosch 7701, South Africa.
College of Engineering and Technology, University of Dar es Salaam, Ubungo, Dar es Salaam 16103, Tanzania.
Materials (Basel). 2025 Mar 12;18(6):1256. doi: 10.3390/ma18061256.
This paper discusses the performance of calcium sulpho-aluminate (CSA) cement and a Sulphate-Resisting Portland Cement (SRPC) with a fly ash (FA) additive (i.e., a SRPC + FA binder system) in a 'live' sewer environment; it deepens the understanding of their deterioration mechanisms by using a laboratory test for simulated sewer conditions. It also studies the role of an iron-based additive ('Hard-Cem', HC) in improving the performance of SRPC + FA concrete under a biogenic acid attack. The performance of 0.4 w/b concrete specimens of the three binders (CSA, SRPC + FA, and SRPC + FA + HC) with calcite aggregates in sewer exposure was assessed by visual observation, measurements of mass and thickness changes, and microstructural analysis for approximately 25 months. The laboratory test, i.e., the Biogenic Acid Concrete (BAC) test, was used to study the deterioration mechanisms of these binders in terms of leaching solution pH and standardised cumulative leached calcium and aluminium. The results indicate that CSA concrete had improved performance in the sewer environment, showing no mass loss and only about one-third of thickness lost in the SRPC + FA concrete over a 25-month exposure period in the sewer environment. The BAC test results complemented the field observations. The iron-based additive in sewer concrete slightly reduced mass loss, likely due to its better resistance to abrasion and erosion, but not due to any chemical influence, since it does not participate in hydration or dissolution reactions. The findings imply that CSA cement may represent a suitable alternative binder for concrete sewer construction. They also suggest that a surface hardener has limited benefits, except when it is under abrasive conditions. Further investigation is required, especially since CSA contains high amounts of sulphate, the effect of which is not well understood.
本文讨论了硫铝酸钙(CSA)水泥以及添加了粉煤灰(FA)的抗硫酸盐波特兰水泥(SRPC)(即SRPC + FA胶凝材料体系)在“实际运行”的下水道环境中的性能;通过模拟下水道条件的实验室试验,加深了对其劣化机制的理解。本文还研究了铁基添加剂(“Hard-Cem”,HC)在生物源酸侵蚀下改善SRPC + FA混凝土性能方面的作用。通过目视观察、质量和厚度变化测量以及微观结构分析,对三种胶凝材料(CSA、SRPC + FA和SRPC + FA + HC)的0.4水胶比且含有方解石骨料的混凝土试件在下水道环境中暴露约25个月后的性能进行了评估。采用实验室试验,即生物源酸混凝土(BAC)试验,从浸出液pH值以及标准化的累计浸出钙和铝方面研究了这些胶凝材料的劣化机制。结果表明,CSA混凝土在下水道环境中性能有所改善,在下水道环境中暴露25个月期间,其质量没有损失,而SRPC + FA混凝土的厚度损失仅约为其三分之一。BAC试验结果补充了现场观察结果。下水道混凝土中的铁基添加剂略微减少了质量损失,这可能是由于其具有更好的耐磨蚀性,但并非由于任何化学影响,因为它不参与水化或溶解反应。研究结果表明,CSA水泥可能是混凝土下水道建设的一种合适替代胶凝材料。研究结果还表明,表面硬化剂的益处有限,除非处于磨蚀条件下。特别是由于CSA含有大量硫酸盐,其影响尚未得到充分了解,因此需要进一步研究。