Aboulela Amr, Peyre Lavigne Matthieu, Buvignier Amaury, Fourré Marlène, Schiettekatte Maud, Pons Tony, Patapy Cédric, Robin Orlane, Bounouba Mansour, Paul Etienne, Bertron Alexandra
LMDC, Université de Toulouse, UPS, INSA, 31077 Toulouse, France.
TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
Materials (Basel). 2021 Feb 2;14(3):686. doi: 10.3390/ma14030686.
The biodeterioration of cementitious materials in sewer networks has become a major economic, ecological, and public health issue. Establishing a suitable standardized test is essential if sustainable construction materials are to be developed and qualified for sewerage environments. Since purely chemical tests are proven to not be representative of the actual deterioration phenomena in real sewer conditions, a biological test-named the Biogenic Acid Concrete (BAC) test-was developed at the University of Toulouse to reproduce the biological reactions involved in the process of concrete biodeterioration in sewers. The test consists in trickling a solution containing a safe reduced sulfur source onto the surface of cementitious substrates previously covered with a high diversity microbial consortium. In these conditions, a sulfur-oxidizing metabolism naturally develops in the biofilm and leads to the production of biogenic sulfuric acid on the surface of the material. The representativeness of the test in terms of deterioration mechanisms has been validated in previous studies. A wide range of cementitious materials have been exposed to the biodeterioration test during half a decade. On the basis of this large database and the expertise gained, the purpose of this paper is (i) to propose a simple and robust performance criterion for the test (standardized leached calcium as a function of sulfate produced by the biofilm), and (ii) to demonstrate the repeatability, reproducibility, and discriminability of the test method. In only a 3-month period, the test was able to highlight the differences in the performances of common cement-based materials (CEM I, CEM III, and CEM V) and special calcium aluminate cement (CAC) binders with different nature of aggregates (natural silica and synthetic calcium aluminate). The proposed performance indicator (relative standardized leached calcium) allowed the materials to be classified according to their resistance to biogenic acid attack in sewer conditions. The repeatability of the test was confirmed using three different specimens of the same material within the same experiment and the reproducibility of the results was demonstrated by standardizing the results using a reference material from 5 different test campaigns. Furthermore, developing post-testing processing and calculation methods constituted a first step toward a standardized test protocol.
排水管网中胶凝材料的生物劣化已成为一个重大的经济、生态和公共卫生问题。若要开发出适用于污水环境的可持续建筑材料并使其符合要求,建立合适的标准化测试至关重要。由于已证明单纯的化学测试无法代表实际污水条件下的真实劣化现象,图卢兹大学开发了一种名为生物源酸性混凝土(BAC)测试的生物测试,以重现污水中混凝土生物劣化过程中涉及的生物反应。该测试包括将含有安全还原硫源的溶液滴流到预先覆盖有高度多样化微生物群落的胶凝材料表面。在这些条件下,生物膜中自然会形成硫氧化代谢,并导致材料表面产生生物源硫酸。该测试在劣化机制方面的代表性已在先前的研究中得到验证。在过去五年中,多种胶凝材料都接受了生物劣化测试。基于这个庞大的数据库以及所积累的专业知识,本文的目的是:(i)为该测试提出一个简单且可靠的性能标准(标准化浸出钙作为生物膜产生的硫酸盐的函数),以及(ii)证明该测试方法的可重复性、再现性和区分性。仅在3个月的时间内,该测试就能突出普通水泥基材料(CEM I、CEM III和CEM V)以及具有不同骨料性质(天然二氧化硅和合成铝酸钙)的特殊铝酸钙水泥(CAC)粘结剂在性能上的差异。所提出的性能指标(相对标准化浸出钙)能够根据材料在污水条件下对生物源酸侵蚀的抗性对其进行分类。在同一实验中使用同一种材料的三个不同样本证实了测试的可重复性,并且通过使用来自5个不同测试批次的参考材料对结果进行标准化,证明了结果的再现性。此外,开发测试后处理和计算方法是迈向标准化测试协议的第一步。