Suppr超能文献

优化算法和计算复杂度对混凝土配合比设计中混凝土抗压强度预测机器学习模型的影响

Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design.

作者信息

Ziolkowski Patryk

机构信息

Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.

出版信息

Materials (Basel). 2025 Mar 20;18(6):1386. doi: 10.3390/ma18061386.

Abstract

The proper design of concrete mixtures is a critical task in concrete technology, where optimal strength, eco-friendliness, and production efficiency are increasingly demanded. While traditional analytical methods, such as the Three Equations Method, offer foundational approaches to mix design, they often fall short in handling the complexity of modern concrete technology. Machine learning-based models have demonstrated notable efficacy in predicting concrete compressive strength, addressing the limitations of conventional methods. This study builds on previous research by investigating not only the impact of computational complexity on the predictive performance of machine learning models but also the influence of different optimization algorithms. The study evaluates the effectiveness of three optimization techniques: the Quasi-Newton Method (QNM), the Adaptive Moment Estimation (ADAM) algorithm, and Stochastic Gradient Descent (SGD). A total of forty-five deep neural network models of varying computational complexity were trained and tested using a comprehensive database of concrete mix designs and their corresponding compressive strength test results. The findings reveal a significant interaction between optimization algorithms and model complexity in enhancing prediction accuracy. Models utilizing the QNM algorithm outperformed those using the ADAM and SGD in terms of error reduction (SSE, MSE, RMSE, NSE, and ME) and increased coefficient of determination (R). These insights contribute to the development of more accurate and efficient AI-driven methods in concrete mix design, promoting the advancement of concrete technology and the potential for future research in this domain.

摘要

混凝土配合比的合理设计是混凝土技术中的一项关键任务,在这一领域,人们对最佳强度、生态友好性和生产效率的要求日益提高。虽然传统的分析方法,如三方程法,为配合比设计提供了基础方法,但它们在处理现代混凝土技术的复杂性方面往往存在不足。基于机器学习的模型在预测混凝土抗压强度方面已显示出显著效果,克服了传统方法的局限性。本研究在先前研究的基础上,不仅研究了计算复杂性对机器学习模型预测性能的影响,还研究了不同优化算法的影响。该研究评估了三种优化技术的有效性:拟牛顿法(QNM)、自适应矩估计(ADAM)算法和随机梯度下降(SGD)。使用混凝土配合比设计及其相应抗压强度试验结果的综合数据库,对总共45个计算复杂性不同的深度神经网络模型进行了训练和测试。研究结果表明,优化算法与模型复杂性之间在提高预测准确性方面存在显著的相互作用。在减少误差(SSE、MSE、RMSE、NSE和ME)和提高决定系数(R)方面,采用QNM算法的模型优于采用ADAM和SGD算法的模型。这些见解有助于在混凝土配合比设计中开发更准确、高效的人工智能驱动方法,推动混凝土技术的进步以及该领域未来研究的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/959f/11944114/c172e0df006d/materials-18-01386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验