Rojas-Forero Ana Y, Hernández-Benítez Laura Y, Ospina-Castro María L, Galán-Freyle Nataly J, Castro-Suarez John R, Méndez-López Maximiliano, Hernández-Rivera Samuel P, Centeno-Ortiz José A, Romero-Nieto Sandra P, Pacheco-Londoño Leonardo C
Ingeniería Ambiental, Vicerrectoría de Investigación, Universidad ECCI, Bogotá 110231, Colombia.
Grupo de Investigación Química Supramolecular Aplicada, Programa de Química, Universidad del Atlántico, Barranquilla 080001, Colombia.
Molecules. 2025 Mar 19;30(6):1375. doi: 10.3390/molecules30061375.
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λ) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF's amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light.
合成了一种由IRMOF-3和ZnO组成的混合材料(IRMOF-3/ZnO),以增强其在可见光照射下光催化降解亚甲基蓝(MB)的性能。扫描电子显微镜、傅里叶变换红外光谱、X射线衍射和漫反射紫外-可见分析证实了ZnO成功地整合到IRMOF-3框架中。与未改性的IRMOF-3相比,该混合物表现出优异的MB分解性能,反应速率常数更快和半衰期更短证明了这一点。监测670nm(λ)处的MB吸光度发现,当IRMOF-3/ZnO暴露于可见光源时,染料去除更为明显。漫反射紫外-可见光谱表明,IRMOF-3的带隙为2.7eV,而IRMOF-3/ZnO的带隙略高,为2.8eV。这种适度的偏移,再加上ZnO半导体与MOF的胺官能团之间的强相互作用,实现了两种不同的能量转移途径:从IRMOF-3连接体(充当可见光天线)到ZnO的分子间转移,以及从Zn到IRMOF-3的分子内转移。这些途径共同产生了丰富的自由基,用于高效的染料降解。尽管需要仔细的合成方案和控制操作条件以保持MOF结构并优化ZnO负载量,但IRMOF-3/ZnO混合物作为一种用于水污染物修复的强大且经济高效的光催化剂具有前景,利用了太阳光中更丰富的可见光区域。