Suppr超能文献

评估基于废水的新冠病毒监测中的实验室间差异

Evaluating Interlaboratory Variability in Wastewater-Based COVID-19 Surveillance.

作者信息

Azzellino Arianna, Pellegrinelli Laura, Pedrini Ramon, Turolla Andrea, Bertasi Barbara, Binda Sandro, Castiglioni Sara, Cocuzza Clementina E, Ferrari Fabio, Franzetti Andrea, Guiso Maria Giovanna, Losio Marina Nadia, Martinelli Marianna, Martines Antonino, Musumeci Rosario, Oliva Desdemona, Sandri Laura, Primache Valeria, Righi Francesco, Scarazzato Annalisa, Schiarea Silvia, Pariani Elena, Ammoni Emanuela, Cereda Danilo, Malpei Francesca

机构信息

Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy.

Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy.

出版信息

Microorganisms. 2025 Feb 27;13(3):526. doi: 10.3390/microorganisms13030526.

Abstract

Wastewater-based environmental surveillance enables the monitoring of SARS-CoV-2 dynamics within populations, offering critical epidemiological insights. Numerous workflows for tracking SARS-CoV-2 have been developed globally, underscoring the need for interlaboratory comparisons to ensure data consistency and comparability. An inter-calibration test was conducted among laboratories within the network monitoring SARS-CoV-2 in wastewater samples across the Lombardy region (Italy). The test aimed to evaluate data reliability and identify potential sources of variability using robust statistical approaches. Three wastewater samples were analyzed in parallel by four laboratories using identical pre-analytical (PEG-8000-based centrifugation) and analytical processes (qPCR targeting N1/N3 and Orf-1ab). A two-way ANOVA framework within Generalized Linear Models was applied, and multiple pairwise comparisons among laboratories were performed using the Bonferroni post hoc test. The statistical analysis revealed that the primary source of variability in the results was associated with the analytical phase. This variability was likely influenced by differences in the standard curves used by the laboratories to quantify SARS-CoV-2 concentrations, as well as the size of the wastewater treatment plants. The findings of this study highlight the importance of interlaboratory testing in verifying the consistency of analytical determinations and in identifying the key sources of variation.

摘要

基于废水的环境监测能够对人群中的新冠病毒动态进行监测,提供关键的流行病学见解。全球已开发出多种追踪新冠病毒的工作流程,这凸显了进行实验室间比对以确保数据一致性和可比性的必要性。在意大利伦巴第地区监测废水样本中新冠病毒的网络内各实验室之间进行了一次相互校准测试。该测试旨在使用稳健的统计方法评估数据可靠性并识别潜在的变异来源。四个实验室使用相同的分析前(基于聚乙二醇8000的离心)和分析过程(针对N1/N3和Orf-1ab的定量聚合酶链反应)对三个废水样本进行了平行分析。在广义线性模型中应用了双向方差分析框架,并使用邦费罗尼事后检验对各实验室之间进行了多次两两比较。统计分析表明,结果变异的主要来源与分析阶段有关。这种变异可能受到各实验室用于量化新冠病毒浓度的标准曲线差异以及污水处理厂规模的影响。本研究结果凸显了实验室间测试在验证分析测定的一致性以及识别关键变异来源方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb6/11945948/cf6edaa08430/microorganisms-13-00526-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验