Suppr超能文献

基于磁共振成像的脑容量测量模型的开发与验证:预测早产儿不良精神运动结局

Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates.

作者信息

Park Joonsik, Han Jungho, Song In Gyu, Eun Ho Seon, Park Min Soo, Sohn Beomseok, Shin Jeong Eun

机构信息

Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03722, Republic of Korea.

出版信息

J Clin Med. 2025 Mar 15;14(6):1996. doi: 10.3390/jcm14061996.

Abstract

: Infant FreeSurfer was introduced to address robust quantification and segmentation in the infant brain. The purpose of this study is to develop a new model for predicting the long-term neurodevelopmental outcomes of very low birth weight preterm infants using automated volumetry extracted from term-equivalent age (TEA) brain MRIs, diffusion tensor imaging, and clinical information. : Preterm infants hospitalized at Severance Children's Hospital, born between January 2012 and December 2019, were consecutively enrolled. Inclusion criteria included infants with birth weights under 1500 g who underwent both TEA MRI and Bayley Scales of Infant and Toddler Development, Second Edition (BSID-II), assessments at 18-24 months of corrected age (CA). Brain volumetric information was derived from Infant FreeSurfer using 3D T1WI of TEA MRI. Mean and standard deviation of fractional anisotropy of posterior limb of internal capsules were measured. Demographic information and comorbidities were used as clinical information. Study cohorts were split into training and test sets with a 7:3 ratio. Random forest and logistic regression models were developed to predict low Psychomotor Development Index (PDI < 85) and low Mental Development Index (MDI < 85), respectively. Performance metrics, including the area under the receiver operating curve (AUROC), accuracy, sensitivity, precision, and F1 score, were evaluated in the test set. : A total of 150 patient data were analyzed. For predicting low PDI, the random forest classifier was employed. The AUROC values for models using clinical variables, MR volumetry, and both clinical variables and MR volumetry were 0.8435, 0.7281, and 0.9297, respectively. To predict low MDI, a logistic regression model was chosen. The AUROC values for models using clinical variables, MR volumetry, and both clinical variables and MR volumetry were 0.7483, 0.7052, and 0.7755, respectively. The model incorporating both clinical variables and MR volumetry exhibited the highest AUROC values for both PDI and MDI prediction. : This study presents a promising new prediction model utilizing an automated volumetry algorithm to distinguish long-term psychomotor developmental outcomes in preterm infants. Further research and validation are required for its clinical application.

摘要

引入婴儿版FreeSurfer是为了实现婴儿脑的可靠量化和分割。本研究的目的是开发一种新模型,利用从足月等效年龄(TEA)脑磁共振成像(MRI)中提取的自动容积测量、扩散张量成像和临床信息,预测极低出生体重早产儿的长期神经发育结局。

连续纳入2012年1月至2019年12月在Severance儿童医院住院的早产儿。纳入标准包括出生体重低于1500g且在矫正年龄(CA)18至24个月时接受了TEA MRI和贝利婴幼儿发育量表第二版(BSID-II)评估的婴儿。脑容积信息来自使用TEA MRI的3D T1WI的婴儿版FreeSurfer。测量内囊后肢各向异性分数的平均值和标准差。人口统计学信息和合并症用作临床信息。研究队列按7:3的比例分为训练集和测试集。分别开发随机森林和逻辑回归模型来预测低心理运动发育指数(PDI<85)和低智力发育指数(MDI<85)。在测试集中评估包括受试者工作特征曲线下面积(AUROC)、准确性、敏感性、精确性和F1分数在内的性能指标。

共分析了150例患者数据。为预测低PDI,采用了随机森林分类器。使用临床变量、MR容积测量以及临床变量和MR容积测量两者的模型的AUROC值分别为0.8435、0.7281和0.9297。为预测低MDI,选择了逻辑回归模型。使用临床变量、MR容积测量以及临床变量和MR容积测量两者的模型的AUROC值分别为0.7483、0.7052和0.7755。结合临床变量和MR容积测量的模型在PDI和MDI预测方面均表现出最高的AUROC值。

本研究提出了一种有前景的新预测模型,利用自动容积测量算法来区分早产儿的长期心理运动发育结局。其临床应用还需要进一步的研究和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc06/11943132/c9b7e7ff3ebe/jcm-14-01996-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验