Dicorato Marco Maria, Basile Paolo, Naccarati Maria Ludovica, Carella Maria Cristina, Dentamaro Ilaria, Falagario Alessio, Cicco Sebastiano, Forleo Cinzia, Guaricci Andrea Igoren, Ciccone Marco Matteo, Santobuono Vincenzo Ezio
Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Polyclinic University Hospital, 70124 Bari, Italy.
Internal Medicine Unit "Guido Baccelli"-Arterial Hypertension Unit "Anna Maria Pirrelli", Department of Precision and Regenerative Medicine and Jonic Area (DiMePReJ), University of Bari "Aldo Moro", Polyclinic University Hospital, 70124 Bari, Italy.
J Clin Med. 2025 Mar 16;14(6):2018. doi: 10.3390/jcm14062018.
Hypertrophic cardiomyopathy (HCM) is a condition characterized by left ventricular hypertrophy, with physiopathological remodeling that predisposes patients to atrial fibrillation (AF). The electrocardiogram is a basic diagnostic tool for evaluating heart electrical activity. Key electrocardiographic features that correlate with AF onset are P-wave duration, P-wave dispersion, and electromechanical delay in left atrium (LA). Clinical markers, including age, body mass index, New York Heart Association functional class, and heart failure symptoms, are also strong predictors of AF in HCM. Risk scores have been created using multiple variables to better predict AF development. Increasing knowledge of genetic subsets in HCM and cardiovascular pathology in general has provided novel insight in this context. Structural and mechanical LA remodeling, including fibrosis, altered LA function, and changes in atrial size, further contribute to AF risk prediction. Cardiovascular magnetic resonance (CMR) and echocardiographic measures provide accurate information about atrial structure and function. Machine learning models are increasingly being utilized to refine risk prediction, incorporating a wide range of variables. This review highlights the multifaceted approach required to understand and predict AF development in HCM. Such an approach is imperative to enhance prognostic accuracy and improve the quality of life of these patients. Further research is necessary to refine patient outcomes and develop customized management strategies for HCM-associated AF.
肥厚型心肌病(HCM)是一种以左心室肥厚为特征的疾病,伴有生理病理重塑,使患者易患心房颤动(AF)。心电图是评估心脏电活动的基本诊断工具。与房颤发作相关的关键心电图特征是P波持续时间、P波离散度和左心房(LA)的机电延迟。临床指标,包括年龄、体重指数、纽约心脏协会心功能分级和心力衰竭症状,也是HCM患者发生房颤的有力预测因素。已经使用多个变量创建了风险评分,以更好地预测房颤的发生。对HCM中基因亚群以及一般心血管病理学认识的不断增加,在此背景下提供了新的见解。包括纤维化、左心房功能改变和心房大小变化在内的左心房结构和机械重塑,进一步有助于房颤风险预测。心血管磁共振(CMR)和超声心动图测量可提供有关心房结构和功能的准确信息。机器学习模型越来越多地被用于完善风险预测,纳入了广泛的变量。本综述强调了理解和预测HCM患者房颤发生所需的多方面方法。这种方法对于提高预后准确性和改善这些患者的生活质量至关重要。需要进一步研究以优化患者预后,并为HCM相关房颤制定定制化管理策略。