Marzulli Morgane, Bleuzé Alexandre, Saad Joe, Martel Felix, Ciuciu Philippe, Aksenova Tetiana, Struber Lucas
Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France.
CEA, LIST, University Grenoble Alpes, Grenoble, France.
Front Hum Neurosci. 2025 Mar 12;19:1521491. doi: 10.3389/fnhum.2025.1521491. eCollection 2025.
Phase-amplitude coupling (PAC), the modulation of high-frequency neural oscillations by the phase of slower oscillations, is increasingly recognized as a marker of goal-directed motor behavior. Despite this interest, its specific role and potential value in decoding attempted motor movements remain unclear.
This study investigates whether PAC-derived features can be leveraged to classify different motor behaviors from ECoG signals within Brain-Computer Interface (BCI) systems. ECoG data were collected using the WIMAGINE implant during BCI experiments with a tetraplegic patient performing mental motor tasks. The data underwent preprocessing to extract complex neural oscillation features (amplitude, phase) through spectral decomposition techniques. These features were then used to quantify PAC by calculating different coupling indices. PAC metrics served as input features in a machine learning pipeline to evaluate their effectiveness in predicting mental tasks (idle state, right-hand movement, left-hand movement) in both offline and pseudo-online modes.
The PAC features demonstrated high accuracy in distinguishing among motor tasks, with key classification features highlighting the coupling of theta/low-gamma and beta/high-gamma frequency bands.
These preliminary findings hold significant potential for advancing our understanding of motor behavior and for developing optimized BCI systems.
相位-振幅耦合(PAC),即高频神经振荡受较慢振荡相位的调制,越来越被视为目标导向运动行为的一个标志。尽管人们对此感兴趣,但其在解码尝试的运动动作中的具体作用和潜在价值仍不明确。
本研究调查了在脑机接口(BCI)系统中,是否可以利用源自PAC的特征从脑电信号(ECoG)中对不同的运动行为进行分类。在BCI实验期间,使用WIMAGINE植入设备收集了一名四肢瘫痪患者执行心理运动任务时的ECoG数据。数据经过预处理,通过频谱分解技术提取复杂的神经振荡特征(振幅、相位)。然后,通过计算不同的耦合指数,利用这些特征来量化PAC。PAC指标作为机器学习流程中的输入特征,以评估其在离线和伪在线模式下预测心理任务(空闲状态、右手运动、左手运动)的有效性。
PAC特征在区分运动任务方面表现出高精度,关键分类特征突出了theta/低伽马和beta/高伽马频段的耦合。
这些初步发现对于增进我们对运动行为的理解以及开发优化的BCI系统具有重大潜力。