Keskin Göksel, Duriez Olivier, Lacerda Pedro, Flack Andrea, Nagy Máté
MTA-ELTE Lendület Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
Department of Biological Physics, ELTE Eötvös Loránd University, Budapest, Hungary.
iScience. 2025 Feb 22;28(3):112090. doi: 10.1016/j.isci.2025.112090. eCollection 2025 Mar 21.
Thermal soaring enables birds to perform cost-efficient flights. Although aerodynamic rules dictate the costs of flight, soaring species vary strongly in their morphologies and behavioral strategies. To quantify morphology-related differences in behavioral cross-country strategies, we analyzed a large dataset consisting of over a hundred individuals from 12 soaring species recorded with high-frequency tracking devices. We quantified their performance during thermalling and gliding flights and their overall cross-country behavior. Our results confirmed aerodynamic theory across the species; species with higher wing loading typically flew faster and consequently turned on a larger radius than lighter ones. Furthermore, the combination of circling radius and minimum sink speed determines the maximum benefits soaring birds obtain from thermals. Notably, we observed a spectrum of strategies regarding the adaptivity to thermal strength and uncovered a universal rule for cross-country strategies for all analyzed species which can provide inspiration for technical applications, like autopilot for robotic gliders.
热气流翱翔使鸟类能够进行高效飞行。尽管空气动力学规律决定了飞行成本,但翱翔鸟类在形态和行为策略上差异很大。为了量化行为越野策略中与形态相关的差异,我们分析了一个大型数据集,该数据集由使用高频跟踪设备记录的来自12种翱翔鸟类的一百多个个体组成。我们量化了它们在热气流上升和滑翔飞行中的表现以及它们的整体越野行为。我们的结果在所有物种中都证实了空气动力学理论;翼载荷较高的物种通常飞得更快,因此转弯半径比翼载荷较轻的物种更大。此外,盘旋半径和最小下沉速度的组合决定了翱翔鸟类从热气流中获得的最大益处。值得注意的是,我们观察到了一系列关于对热气流强度适应性的策略,并发现了所有分析物种越野策略的通用规则,这可以为技术应用提供灵感,比如机器人滑翔机的自动驾驶仪。