Suppr超能文献

反应物溶解对阿加曲班生产中催化氢化动力学的影响。

Impact of Reactant Dissolution in the Kinetics of a Catalytic Hydrogenation for the Production of Argatroban.

作者信息

Nanto Filippo, Ciato Dario, Stivanello Mariano, Canu Paolo

机构信息

Industrial Engineering Department, University of Padova, Via Marzolo 9, Padova 35131, Italy.

Lundbeck Pharmaceuticals Italy, Quarta Strada 2, Padova 35129, Italy.

出版信息

Org Process Res Dev. 2025 Mar 12;29(3):735-747. doi: 10.1021/acs.oprd.4c00479. eCollection 2025 Mar 21.

Abstract

An experimental study was performed for a fed-batch catalytic hydrogenation for the production of Argatroban. The penultimate expensive and scarcely available intermediate is characterized by a slow dissolution rate that evolves in parallel with the reaction process. The study investigated the coupling between the reaction and dissolution kinetics. In these circumstances, the standard Area Percentage method in HPLC was found to be misleading, requiring calibration and then absolute peak area measurements to correctly identify the dissolution rate and thus the actual chemical kinetics. Experiments quantified the role of the temperature, stirring rate, and catalyst loading. Shifting from 40 to 80 °C reduced the batch time by 58%, although higher temperatures promoted the formation of undesired impurities. Stirring rate controlled the initial reaction phases when reagent dissolution is critical. Catalyst loading is key in reducing batch time. The increase in catalyst loading was proved to affect the reagent dissolution rate, by increasing the collision frequency between reagent and catalyst particles. A refined first-principles model, incorporating the effect of the catalyst amount on the dissolution mass transfer coefficient, significantly improved the accuracy of dissolution predictions and enabled better identification of the intrinsic reaction kinetics. The addition of a microkinetic description further improved the predictions of intermediates and products.

摘要

进行了一项关于间歇补料催化加氢制备阿加曲班的实验研究。倒数第二个昂贵且难以获得的中间体具有缓慢的溶解速率,该速率与反应过程同时变化。该研究考察了反应动力学与溶解动力学之间的耦合关系。在这种情况下,发现高效液相色谱法中的标准面积百分比法具有误导性,需要进行校准,然后进行绝对峰面积测量,以正确确定溶解速率,从而确定实际的化学动力学。实验量化了温度、搅拌速率和催化剂负载量的作用。温度从40℃升至80℃可使批次时间缩短58%,尽管较高温度会促进不需要的杂质生成。当试剂溶解至关重要时,搅拌速率控制着初始反应阶段。催化剂负载量是缩短批次时间的关键。事实证明,催化剂负载量的增加会通过提高试剂与催化剂颗粒之间的碰撞频率来影响试剂的溶解速率。一个完善的第一性原理模型,纳入了催化剂量对溶解传质系数的影响,显著提高了溶解预测的准确性,并能更好地确定本征反应动力学。添加微观动力学描述进一步改善了中间体和产物的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbda/11934128/fdf5a9b6ba88/op4c00479_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验