Suppr超能文献

基于聚类分析的中国川崎病亚组冠状动脉病变预测通用模型

A universal model for predicting coronary artery lesions in subgroups of kawasaki disease in China: based on cluster analysis.

作者信息

Gong Chuxiong, Li Feng, Su Zhongjian, Fu Yanan, Zhang Xing, Li Qinhong, Liu Xiaomei, Deng Lili

机构信息

Cardiovascular Department, Kunming Children's Hospital, Kunming, Yunnan, China.

Department of Infectious Diseases, Kunming Children's Hospital, Kunming, Yunnan, China.

出版信息

Front Cardiovasc Med. 2025 Mar 12;12:1532768. doi: 10.3389/fcvm.2025.1532768. eCollection 2025.

Abstract

OBJECTIVE

Coronary artery lesions (CAL) represent the most severe complication of Kawasaki disease (KD). Currently, there is no standardized method for predicting CAL in KD, and the predictive effectiveness varies among different KD patients. Therefore, our study aims to establish distinct predictive models for CAL complications based on the characteristics of different clusters.

METHODS

We employed principal component clustering analysis to categorize 1,795 KD patients into different clustered subgroups. We summarized the characteristics of each cluster and compared the occurrence of CAL components within each cluster. Additionally, we utilized LASSO analysis to further screen for factors associated with CAL. We then constructed CAL predictive models for each subgroup using the selected factors and conducted preliminary validation and assessment.

RESULTS

Through PCA analysis, we identified three clusters in KD. We developed predictive models for each of the three clusters. The AUCs of the three predictive models were 0.789 (95% CI: 0.732-0.845), 0.894 (95% CI: 0.856-0.932), and 0.773 (95% CI: 0.727-0.819), respectively, all demonstrating good predictive performance.

CONCLUSION

Our study identified the existence of three clusters among KD patients. We developed KD-related CAL predictive models with good predictive performance for each cluster with distinct characteristics. This provides reference for individualized precision treatment of KD patients and aids in the health management of coronary arteries in KD.

摘要

目的

冠状动脉病变(CAL)是川崎病(KD)最严重的并发症。目前,尚无标准化的方法来预测KD中的CAL,且不同KD患者的预测效果存在差异。因此,我们的研究旨在基于不同聚类的特征建立CAL并发症的不同预测模型。

方法

我们采用主成分聚类分析将1795例KD患者分为不同的聚类亚组。我们总结了每个聚类的特征,并比较了每个聚类中CAL成分的发生情况。此外,我们利用LASSO分析进一步筛选与CAL相关的因素。然后,我们使用选定的因素为每个亚组构建CAL预测模型,并进行初步验证和评估。

结果

通过主成分分析,我们在KD中确定了三个聚类。我们为这三个聚类分别开发了预测模型。这三个预测模型的AUC分别为0.789(95%CI:0.732-0.845)、0.894(95%CI:0.856-0.932)和0.773(95%CI:0.727-0.819),均显示出良好的预测性能。

结论

我们的研究确定了KD患者中存在三个聚类。我们为每个具有不同特征的聚类开发了具有良好预测性能的KD相关CAL预测模型。这为KD患者的个体化精准治疗提供了参考,并有助于KD患者冠状动脉的健康管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc24/11936964/ed2156847421/fcvm-12-1532768-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验