Suppr超能文献

开发并验证用于指导肺移植术后围手术期他克莫司给药的群体药代动力学模型。

Development and validation of a population pharmacokinetic model to guide perioperative tacrolimus dosing after lung transplantation.

作者信息

Miano Todd A, Zuppa Athena F, Feng Rui, Griffiths Stephen, Kalman Laurel, Oyster Michelle, Cantu Edward, Yang Wei, Diamond Joshua M, Christie Jason D, Scheetz Marc H, Shashaty Michael G S

机构信息

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

Center for Real-world Effectiveness and Safety of Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

出版信息

JHLT Open. 2024 Aug 6;6:100134. doi: 10.1016/j.jhlto.2024.100134. eCollection 2024 Nov.

Abstract

BACKGROUND

Tacrolimus therapy is standard of care for immunosuppression after lung transplantation. However, tacrolimus exposure variability during the early postoperative period may contribute to poor outcomes in this population. Few studies have examined tacrolimus pharmacokinetics (PK) during this high-risk period.

METHODS

We conducted a retrospective pharmacokinetic study in lung transplant recipients at the University of Pennsylvania who were enrolled in the Lung Transplant Outcomes Group cohort. We used nonlinear mixed-effects regression to derive a population PK model in 270 patients and examined validity in a separate cohort of 114 patients. Covariates were examined with univariate analysis and a multivariable model was developed using forward and backward stepwise selection. The performance of the final model in the validation cohort was examined with calculation of prediction error (PE).

RESULTS

We developed a 1-compartment base model with a fixed rate absorption constant. Covariates improving model fit were postoperative day, hematocrit, transplant type, genotype, weight, and exposure to cytochrome p450 enzyme (CYP) inhibitor drugs. The strongest predictor of tacrolimus clearance was postoperative day, with median predicted clearance increasing more than 3-fold over the 14-day study period. In the validation cohort, the final model showed a mean PE of 36.4% (95% confidence interval 30.8%-41.9%) and a median PE of 7.2% (interquartile range -29.3% to 70.53%).

CONCLUSIONS

Tacrolimus clearance is highly dynamic during the early postlung transplant period. Population PK models that include lung-transplant-specific covariates may enable precision dosing algorithms that account for this highly dynamic clearance. Future multicenters studies including a broader set of covariates are warranted.

摘要

背景

他克莫司疗法是肺移植术后免疫抑制的标准治疗方法。然而,术后早期他克莫司的暴露变异性可能导致该人群预后不良。很少有研究在这个高危时期研究他克莫司的药代动力学(PK)。

方法

我们对宾夕法尼亚大学参加肺移植结果组队列研究的肺移植受者进行了一项回顾性药代动力学研究。我们使用非线性混合效应回归在270例患者中推导群体PK模型,并在114例患者的独立队列中检验其有效性。通过单变量分析检查协变量,并使用向前和向后逐步选择建立多变量模型。通过计算预测误差(PE)来检验最终模型在验证队列中的性能。

结果

我们开发了一个具有固定吸收速率常数的一室基础模型。改善模型拟合的协变量包括术后天数、血细胞比容、移植类型、基因型、体重以及细胞色素P450酶(CYP)抑制剂药物暴露。他克莫司清除率的最强预测因子是术后天数,在为期14天的研究期间,预测清除率中位数增加了3倍多。在验证队列中,最终模型的平均PE为36.4%(95%置信区间30.8%-41.9%),中位数PE为7.2%(四分位间距-29.3%至70.53%)。

结论

肺移植术后早期他克莫司清除率变化很大。包含肺移植特异性协变量的群体PK模型可能有助于制定考虑到这种高度动态清除率的精准给药算法。未来需要开展包括更广泛协变量的多中心研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de88/11935331/bb232dcb4634/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验