Navalpotro Paula, Santos Carla Santana, Alcantara Murilo L, Muñoz-Perales Vanesa, Ibañez Santiago E, Martínez-Bejarano Antonio, Jiyane Nomnotho, Neves Catarina M S S, Rubio-Presa Rubén, Quast Thomas, Schuhmann Wolfgang, Coutinho João A P, Marcilla Rebeca
Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de La Sagra 3, Móstoles, 28935, Spain.
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
Angew Chem Int Ed Engl. 2025 Jun 2;64(23):e202424650. doi: 10.1002/anie.202424650. Epub 2025 Apr 7.
Membrane-free flow batteries using immiscible electrolytes aim to overcome limitations of conventional redox flow batteries by eliminating expensive ion-selective membranes. However, they face challenges including low power density due to the transport constraints in immiscible electrolytes, the need for high partitioned stable compatible active species, and the overlooked self-discharge interphase phenomena that reduce coulombic efficiency. We present a novel aqueous biphasic system based on two salts improving electrolyte ionic conductivity and viscosity. Potassium ferrocyanide (K[Fe(CN)]) and a sulfonated viologen ((SPr)V) species were examined computationally and experimentally, demonstrating effective redox pair separation in all oxidation states, achieving a tenfold higher concentration in their electrolyte. The mutual compatibility and stability of these species enabled unprecedented scanning electrochemical microscopy (SECM) analysis of the liquid-liquid interphase, revealing insights like species concentration gradients and crossover. The enhanced electrolyte properties expanded the open-circuit voltage to 1.1 V and improved mass transport, enabling power densities that are 3.5 times higher than previous examples. The battery achieved 80.2% energy efficiency at a C/2 rate, and under flowing conditions, it maintained stable performance over a month (400 cycles) at high states of charge. This work presents an innovative aqueous membrane-free flow battery that avoids parasitic reactions, enabling detailed interphase studies and advancing this technology.
使用不混溶电解质的无膜液流电池旨在通过消除昂贵的离子选择性膜来克服传统氧化还原液流电池的局限性。然而,它们面临着诸多挑战,包括由于不混溶电解质中的传输限制导致的低功率密度、对高分配稳定兼容活性物种的需求,以及被忽视的降低库仑效率的自放电相间现象。我们提出了一种基于两种盐的新型双水相体系,可提高电解质的离子电导率和粘度。通过计算和实验研究了亚铁氰化钾(K[Fe(CN)])和一种磺化紫精((SPr)V)物种,证明了在所有氧化态下有效的氧化还原对分离,在其电解质中的浓度提高了十倍。这些物种的相互兼容性和稳定性使得对液 - 液界面进行前所未有的扫描电化学显微镜(SECM)分析成为可能,揭示了诸如物种浓度梯度和交叉等现象。增强的电解质性能将开路电压提高到1.1 V,并改善了传质,使功率密度比以前的例子高出3.5倍。该电池在C/2速率下实现了80.2%的能量效率,并且在流动条件下,在高充电状态下一个月(400次循环)保持稳定性能。这项工作展示了一种创新的无膜水相液流电池,避免了寄生反应,能够进行详细的界面研究并推动该技术发展。