Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231 Cedex 05 Paris, France.
Sorbonne Université, 75006 Paris, France.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2220662120. doi: 10.1073/pnas.2220662120. Epub 2023 Apr 17.
Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.
与水和极性溶剂之间形成的两种不混溶电解质溶液(ITIES)界面不同,对于水相两相体系(ABSs)形成的液-液界面的分子理解相对有限,主要依赖于表面张力测量和热力学模型。在这里,高分辨率拉曼成像用于提供氯化锂-双(三氟甲烷磺酰基)亚胺-水(LiCl-LiTFSI-水)和 HCl-LiTFSI-水的界面的空间和化学分辨率,这是一系列电化学应用中发现的典型盐-盐 ABSs。发现两种 TFSI 阴离子和水的浓度分布均呈 S 形,因此两种盐和溶剂均没有出现正吸附的迹象。然而,更引人注目的是浓度分布延伸的长度,随着浓度的增加,从 11 到 2 µm 不等,而对于 ITIES 则为几个纳米。因此,我们揭示了与 ITIES 不同,盐-盐 ABSs 没有分子上的锐利界面,而是形成了一个相间,环境从一相到另一相逐渐变化。这一知识代表了在理解水相界面方面的一个重要里程碑,对于掌握广泛的生物和技术环境中的离子或电子转移动力学至关重要,包括新型电池技术,如无膜氧化还原流和双离子电池。