Suppr超能文献

自动FRS:一种经外部验证的、无需注释的胰腺手术术前计算并发症风险分层方法——一项实验研究

AutoFRS: an externally validated, annotation-free approach to computational preoperative complication risk stratification in pancreatic surgery - an experimental study.

作者信息

Kolbinger Fiona R, Bhasker Nithya, Schön Felix, Cser Daniel, Zwanenburg Alex, Löck Steffen, Hempel Sebastian, Schulze André, Skorobohach Nadiia, Schmeiser Hanna M, Klotz Rosa, Hoffmann Ralf-Thorsten, Probst Pascal, Müller Beat, Bodenstedt Sebastian, Wagner Martin, Weitz Jürgen, Kühn Jens-Peter, Distler Marius, Speidel Stefanie

机构信息

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.

出版信息

Int J Surg. 2025 May 1;111(5):3212-3223. doi: 10.1097/JS9.0000000000002327.

Abstract

BACKGROUND

The risk of postoperative pancreatic fistula (POPF), one of the most dreaded complications after pancreatic surgery, can be predicted from preoperative imaging and tabular clinical routine data. However, existing studies suffer from limited clinical applicability due to a need for manual data annotation and a lack of external validation. We propose AutoFRS (automated fistula risk score software), an externally validated end-to-end prediction tool for POPF risk stratification based on multimodal preoperative data.

MATERIALS AND METHODS

We trained AutoFRS on preoperative contrast-enhanced computed tomography imaging and clinical data from 108 patients undergoing pancreatic head resection and validated it on an external cohort of 61 patients. Prediction performance was assessed using the area under the receiver operating characteristic curve (AUC) and balanced accuracy. In addition, model performance was compared to the updated alternative fistula risk score (ua-FRS), the current clinical gold standard method for intraoperative POPF risk stratification.

RESULTS

AutoFRS achieved an AUC of 0.81 and a balanced accuracy of 0.72 in internal validation and an AUC of 0.79 and a balanced accuracy of 0.70 in external validation. In a patient subset with documented intraoperative POPF risk factors, AutoFRS (AUC: 0.84 ± 0.05) performed on par with the uaFRS (AUC: 0.85 ± 0.06). The AutoFRS web application facilitates annotation-free prediction of POPF from preoperative imaging and clinical data based on the AutoFRS prediction model.

CONCLUSION

POPF can be predicted from multimodal clinical routine data without human data annotation, automating the risk prediction process. We provide additional evidence of the clinical feasibility of preoperative POPF risk stratification and introduce a software pipeline for future prospective evaluation.

摘要

背景

术后胰瘘(POPF)是胰腺手术后最可怕的并发症之一,可通过术前影像学检查和表格形式的临床常规数据进行预测。然而,由于需要人工数据标注且缺乏外部验证,现有研究的临床适用性有限。我们提出了AutoFRS(自动瘘管风险评分软件),这是一种基于多模式术前数据进行外部验证的用于POPF风险分层的端到端预测工具。

材料与方法

我们使用108例接受胰头切除术患者的术前对比增强计算机断层扫描成像和临床数据对AutoFRS进行训练,并在61例患者的外部队列中对其进行验证。使用受试者操作特征曲线下面积(AUC)和平衡准确度评估预测性能。此外,将模型性能与更新后的替代瘘管风险评分(ua-FRS)进行比较,ua-FRS是目前术中POPF风险分层的临床金标准方法。

结果

AutoFRS在内部验证中的AUC为0.81,平衡准确度为0.72;在外部验证中的AUC为0.79,平衡准确度为0.70。在有记录的术中POPF风险因素的患者亚组中,AutoFRS(AUC:0.84±0.05)的表现与uaFRS(AUC:0.85±0.06)相当。AutoFRS网络应用程序基于AutoFRS预测模型,便于从术前影像学检查和临床数据中进行无标注的POPF预测。

结论

无需人工数据标注,可从多模式临床常规数据预测POPF,实现风险预测过程的自动化。我们提供了术前POPF风险分层临床可行性的更多证据,并引入了一个软件流程以供未来进行前瞻性评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验