Carstens Matthias, Pfeiffer Micha, Speidel Stefanie, Distler Marius, Weitz Jürgen, Kolbinger Fiona R
Klinik und Poliklinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland.
Abteilung für Translationale Chirurgische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT/UCC) Dresden, Dresden, Deutschland.
Chirurgie (Heidelb). 2025 Aug 26. doi: 10.1007/s00104-025-02366-0.
Artificial intelligence (AI) holds great potential for minimally invasive surgery, with fields of application ranging from interdisciplinary treatment stratification through preoperative planning up to active decision support in the operating room, which are the focus of this article. Artificial neural networks for analysis of surgical video recordings could enhance surgical safety, efficiency and planning. High-quality, diverse (meta)data are essential for such AI applications but the annotation, training and validation present complex demands. Despite technological advances, the clinical implementation often fails due to a lack of data standardization, insufficient infrastructure, regulatory barriers and ethical uncertainties. Many models remain black boxes, which hinders acceptance and trust among medical professionals. In addition, AI systems need to be robust, transparent and practically integrable into clinical workflows. Stringent data collection strategies, privacy-preserving learning methods, explainable AI and human-in-the-loop approaches are critical to facilitate clinical translation. Regulatory framework conditions, such as the General Data Protection Regulation, the EU Medical Device Regulation and the EU AI Act, will require further legal refinements to address the specific needs of medical AI applications and interventions, to facilitate the safe adoption of interdisciplinary assistive technologies in the operating room that meaningfully support surgical practice.
人工智能(AI)在微创手术中具有巨大潜力,其应用领域涵盖从跨学科治疗分层、术前规划到手术室中的主动决策支持等,这些都是本文的重点。用于分析手术视频记录的人工神经网络可以提高手术安全性、效率和规划水平。高质量、多样化的(元)数据对于此类人工智能应用至关重要,但注释、训练和验证提出了复杂的要求。尽管技术取得了进步,但由于缺乏数据标准化、基础设施不足、监管障碍和伦理不确定性,临床应用往往失败。许多模型仍然是黑箱,这阻碍了医学专业人员的接受和信任。此外,人工智能系统需要强大、透明且能切实融入临床工作流程。严格的数据收集策略、隐私保护学习方法、可解释人工智能和人在回路方法对于促进临床转化至关重要。监管框架条件,如《通用数据保护条例》、《欧盟医疗器械条例》和《欧盟人工智能法案》,将需要进一步的法律完善,以满足医学人工智能应用和干预的特定需求,促进在手术室中安全采用能切实支持手术实践的跨学科辅助技术。