Suppr超能文献

AdamGraph:用于脑电图情感识别的自适应注意力调制图网络

AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition.

作者信息

Philip Chen C L, Chen Bianna, Zhang Tong

出版信息

IEEE Trans Cybern. 2025 May;55(5):2038-2051. doi: 10.1109/TCYB.2025.3550191. Epub 2025 Apr 23.

Abstract

The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.

摘要

潜在的时变且特定于个体的脑动力学导致脑电图(EEG)拓扑结构以及个体内部和个体之间的表示分布不一致。然而,当前的工作主要是对齐EEG表示的分布,而忽略了在捕捉通道之间的依赖关系时拓扑结构的变异性,这可能会限制EEG情感识别的性能。为了解决这个问题,本文提出了一种自适应注意力调制图网络(AdamGraph),以增强EEG情感识别针对连接变异性和表示变异性的主体适应性。具体而言,提出了一种注意力调制图连接模块,以自适应地明确捕捉通道之间的个体重要关系。通过基于先验知识利用空间连接来调制个体功能连接的注意力矩阵,可以学习注意力调制权重以自适应地构建个体连接,从而减轻个体差异。此外,设计了一个深度节点图表示学习模块,以提取通道之间的远程交互特征并缓解表示的过平滑问题。此外,还引入了一个图域共正则化学习模块来解决不同域之间连接和表示中的个体分布差异。在三个公共EEG情感数据集,即SEED、DREAMER和MPED上进行的大量实验验证了AdamGraph与现有方法相比的优越性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验