Yu Hyejin, Oh Younghoon, Kim Yu Lim, Liu Cong, Park Kyobin, Cha Hyun Gil, Delferro Massimiliano, Kang Donghyeon
Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
ACS Appl Mater Interfaces. 2025 Apr 9;17(14):21097-21109. doi: 10.1021/acsami.4c20887. Epub 2025 Mar 27.
Polyethylene terephthalate (PET) depolymerization in base/alcohol hybrid systems represents a promising low-energy approach for chemically recycling PET waste into valuable monomers. This study investigates the mechanistic pathways of PET depolymerization in NaOH/alcohol solutions, emphasizing the competing roles of hydroxide and alkoxide species. Utilizing a combination of experimental techniques, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations, we explore how factors such as base concentration, alcohol chain length, and p values of alcohols influence PET depolymerization efficiency and pathways. Our findings indicate that alkoxide ions (RO) exhibit notably higher reactivity than hydroxide ions (HO), favoring an alcoholysis pathway in the base/alcohol hybrid system. Experimental results across a series of C1 to C5 alcohols show that longer-chain alcohols, particularly 1-butanol, achieve higher PET conversion, although this does not align solely with simple nucleophilicity trends of alkoxides. While DFT calculations reveal comparable activation energies for various alkoxides in PET depolymerization, MD simulations underscore the significant role of alcohol chain length, with longer-chain alcohols forming more stable or frequent interactions with PET. Additionally, the alkoxide concentration, influenced by the alcohol's p, directly impacts PET conversion. These suggest that PET depolymerization is governed by a balance between alkoxide concentration and alkoxide-PET interactions, rather than activation energies or nucleophilicity alone. From a practical perspective, incorporating long-chain alcohols as cosolvents may enhance process efficiency but increases raw material costs by approximately 30%. However, long-chain alcohols present a safer and more sustainable alternative to hazardous cosolvents such as dichloromethane. This work offers a molecular-level understanding of PET depolymerization in base/alcohol systems and provides insights into optimizing these systems for more efficient and sustainable PET recycling processes.
在碱/醇混合体系中对聚对苯二甲酸乙二酯(PET)进行解聚,是一种颇具前景的低能耗方法,可将PET废料化学回收为有价值的单体。本研究调查了PET在NaOH/醇溶液中解聚的机理途径,着重强调了氢氧根和醇盐物种的竞争作用。通过结合实验技术、密度泛函理论(DFT)计算和分子动力学(MD)模拟,我们探究了诸如碱浓度、醇链长度和醇的p值等因素如何影响PET解聚效率和途径。我们的研究结果表明,醇盐离子(RO⁻)的反应活性明显高于氢氧根离子(HO⁻),在碱/醇混合体系中有利于醇解途径。一系列C1至C5醇的实验结果表明,长链醇,特别是1-丁醇,能实现更高的PET转化率,尽管这并不完全符合醇盐简单的亲核性趋势。虽然DFT计算揭示了PET解聚中各种醇盐具有相当的活化能,但MD模拟强调了醇链长度的重要作用,长链醇与PET形成更稳定或更频繁的相互作用。此外,受醇的p值影响的醇盐浓度直接影响PET转化率。这些表明,PET解聚受醇盐浓度和醇盐 - PET相互作用之间的平衡支配,而不仅仅取决于活化能或亲核性。从实际角度来看,加入长链醇作为共溶剂可能会提高工艺效率,但会使原材料成本增加约30%。然而,长链醇是二氯甲烷等危险共溶剂更安全、更可持续的替代品。这项工作提供了对碱/醇体系中PET解聚的分子水平理解,并为优化这些体系以实现更高效、可持续的PET回收过程提供了见解。