Suppr超能文献

为早期精神病打造学习型健康系统:来自学术团体EPINET的见解

Forging a learning health system for early psychosis: Insights from the academic community EPINET.

作者信息

Vohs Jenifer L, Cahill John, Taylor Stephan F, Heckers Stephan, Weiss Ashley, Chaudhry Serena, Silverstein Steve, Tso Ivy F, Breitborde Nicholas J K, Vinson Alexandra, Lapidos Adrienne, Visco Andrew C, Satchivi Audrey, Gaunnac Megan, Breier Alan, Srihari Vinod

机构信息

Indiana University School of Medicine, Department of Psychiatry. 355 W. 16th Street, Indianapolis, IN, USA; Prevention and Recovery Center for Early Psychosis (PARC), Sandra Eskenazi Mental Health Centers Indianapolis, 720 Eskenazi Avenue, Indianapolis, IN, USA.

Yale School of Medicine, Department of Psychiatry, Specialized Treatment Early in Psychosis (STEP), 34 Park Street, New Haven, CT, USA.

出版信息

Schizophr Res. 2025 Apr;278:109-118. doi: 10.1016/j.schres.2025.03.020. Epub 2025 Mar 26.

Abstract

Psychosis can lead to deleterious outcomes with multifaceted personal and societal costs, but the provision of intervention services early in the illness course positively influences disease trajectory. There has been a growing emphasis on innovation and expansion of first episode services (FES). Yet, such care has not universally delivered on the promise of meeting the needs of individuals with first-episode psychosis. The Academic Community Early Psychosis Intervention Network (AC-EPINET) is one of eight regional hubs envisioned by NIH to function as a learning healthcare system (LHS) to advance the quality of early intervention care. AC-EPINET spans three geographically distinct areas of the U.S. (Midwest: Indiana, Michigan, Ohio; Southeastern: Tennessee, Louisiana; and Northeastern: Connecticut, New York) with six academically oriented, community-facing FES' and an informatics site. Our goals were to strengthen existing services, expand them to collect common data elements within clinical workflows, leverage informatics, support practice-based research, and engage stakeholders to ultimately build a culture of continuous learning and quality improvement. We designed and implemented an infrastructure consisting of a centralized two-site administrative team supporting an inclusive steering committee, three work groups, and the six clinical sites. Common data capture at enrollment and consecutive six-month intervals was integrated into clinical workflows. An informatics workflow that included evidence-based benchmarked outcome visualization, for each site and across the entire network, was designed and deployed to enable shared learning and ongoing quality improvement efforts. Design and implementation lessons presented are relevant to LHS development and dissemination of FES quality improvement and research efforts.

摘要

精神病会导致有害后果,带来多方面的个人和社会成本,但在疾病过程早期提供干预服务会对疾病轨迹产生积极影响。人们越来越重视首次发作服务(FES)的创新和扩展。然而,这种护理尚未普遍兑现满足首次发作精神病患者需求的承诺。学术社区早期精神病干预网络(AC-EPINET)是美国国立卫生研究院设想的八个区域中心之一,旨在作为一个学习型医疗系统(LHS),以提高早期干预护理的质量。AC-EPINET跨越美国三个地理上不同的地区(中西部:印第安纳州、密歇根州、俄亥俄州;东南部:田纳西州、路易斯安那州;以及东北部:康涅狄格州、纽约州),拥有六个面向社区的学术型FES和一个信息学站点。我们的目标是加强现有服务,扩展服务以在临床工作流程中收集通用数据元素,利用信息学,支持基于实践的研究,并让利益相关者参与进来,最终建立一种持续学习和质量改进的文化。我们设计并实施了一个基础设施,该基础设施由一个集中的两地管理团队组成,该团队支持一个包容性的指导委员会、三个工作组和六个临床站点。在入组时以及随后连续的六个月间隔期进行的通用数据采集被整合到临床工作流程中。设计并部署了一个信息学工作流程,该流程包括针对每个站点以及整个网络的基于证据的基准化结果可视化,以促进共享学习和持续的质量改进工作。所介绍的设计和实施经验教训与LHS的发展以及FES质量改进和研究工作的传播相关。

相似文献

6
OnTrackNY's learning healthcare system.纽约追踪计划的学习型医疗体系。
J Clin Transl Sci. 2020 Apr 6;4(4):301-306. doi: 10.1017/cts.2020.35.

本文引用的文献

3
Socio-technical infrastructure for a learning health system.学习型健康系统的社会技术基础设施。
Learn Health Syst. 2024 Jan 16;8(1):e10405. doi: 10.1002/lrh2.10405. eCollection 2024 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验