Suppr超能文献

Class balancing diversity multimodal ensemble for Alzheimer's disease diagnosis and early detection.

作者信息

Francesconi Arianna, di Biase Lazzaro, Cappetta Donato, Rebecchi Fabio, Soda Paolo, Sicilia Rosa, Guarrasi Valerio

机构信息

Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.

Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.

出版信息

Comput Med Imaging Graph. 2025 Jul;123:102529. doi: 10.1016/j.compmedimag.2025.102529. Epub 2025 Mar 22.

Abstract

Alzheimer's disease (AD) poses significant global health challenges due to its increasing prevalence and associated societal costs. Early detection and diagnosis of AD are critical for delaying progression and improving patient outcomes. Traditional diagnostic methods and single-modality data often fall short in identifying early-stage AD and distinguishing it from Mild Cognitive Impairment (MCI). This study addresses these challenges by introducing a novel approach: multImodal enseMble via class BALancing diversity for iMbalancEd Data (IMBALMED). IMBALMED integrates multimodal data from the Alzheimer's Disease Neuroimaging Initiative database, including clinical assessments, neuroimaging phenotypes, biospecimen, and subject characteristics data. It employs a new ensemble of model classifiers, designed specifically for this framework, which combines eight distinct families of learning paradigms trained with diverse class balancing techniques to overcome class imbalance and enhance model accuracy. We evaluate IMBALMED on two diagnostic tasks (binary and ternary classification) and four binary early detection tasks (at 12, 24, 36, and 48 months), comparing its performance with state-of-the-art algorithms and an unbalanced dataset method. To further validate the proposed model and ensure genuine generalization to real-world scenarios, we conducted an external validation experiment using data from the most recent phase of the ADNI dataset. IMBALMED demonstrates superior diagnostic accuracy and predictive performance in both binary and ternary classification tasks, significantly improving early detection of MCI at a 48-month time point and showing excellent generalizability in the 12-month task during external validation. The method shows improved classification performance and robustness, offering a promising solution for early detection and management of AD.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验