Shen Xiangyu, Hu Xiangyang, Zhang Renfeng, Fu Yunzhan, Xu Jiamin, Lyu Degang, Xie Hongbiao, Shi Deen, Shi Changsheng, Li Lisi, Gao Yuantong
Hangzhou Dianzi University, Hangzhou, China.
Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Front Neurosci. 2025 Aug 26;19:1637291. doi: 10.3389/fnins.2025.1637291. eCollection 2025.
As a progressive neurodegeneration, Alzheimer's disease (AD) represents the primary etiology of dementia among the elderly. Early identification of individuals with mild cognitive impairment (MCI) who are likely to convert to AD is essential for timely diagnosis and therapeutic intervention. Although multimodal neuroimaging and clinical data provide complementary information, existing fusion models often face challenges such as high computational complexity and limited interpretability.
To address these limitations, we introduce TriLightNet, an innovative lightweight triple-modal fusion network designed to integrate structural MRI, functional PET, and clinical tabular data for predicting MCI-to-AD conversion. TriLightNet incorporates a hybrid backbone that combines Kolmogorov-Arnold Networks with PoolFormer for efficient feature extraction. Additionally, it introduces a Hybrid Block Attention Module to capture subtle interactions between image and clinical features and employs a MultiModal Cascaded Attention mechanism to enable progressive and efficient fusion across the modalities. These components work together to streamline multimodal data integration while preserving meaningful insights.
Extensive experiments conducted on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate the effectiveness of TriLightNet, showcasing superior performance compared to state-of-the-art methods. Specifically, the model achieves an accuracy of 81.25%, an AUROC of 0.8146, and an F1-score of 69.39%, all while maintaining reduced computational costs.
Furthermore, its interpretability was validated using the Integrated Gradients method, which revealed clinically relevant brain regions contributing to the predictions, enhancing its potential for meaningful clinical application. Our code is available at https://github.com/sunyzhi55/TriLightNet.
作为一种进行性神经退行性疾病,阿尔茨海默病(AD)是老年人痴呆的主要病因。早期识别可能转化为AD的轻度认知障碍(MCI)个体对于及时诊断和治疗干预至关重要。尽管多模态神经影像学和临床数据提供了互补信息,但现有的融合模型常常面临诸如高计算复杂度和有限可解释性等挑战。
为解决这些局限性,我们引入了TriLightNet,这是一种创新的轻量级三模态融合网络,旨在整合结构MRI、功能PET和临床表格数据以预测MCI向AD的转化。TriLightNet采用了一种混合主干,将柯尔莫哥洛夫 - 阿诺德网络与PoolFormer相结合以进行高效特征提取。此外,它引入了混合块注意力模块来捕捉图像和临床特征之间的细微交互,并采用多模态级联注意力机制以实现跨模态的渐进式和高效融合。这些组件协同工作以简化多模态数据整合,同时保留有意义的见解。
在阿尔茨海默病神经影像学倡议(ADNI)数据集上进行的广泛实验证明了TriLightNet的有效性,与现有最先进方法相比展示出卓越性能。具体而言,该模型实现了81.25%的准确率、0.8146的曲线下面积(AUROC)和69.39%的F1分数,同时保持了降低的计算成本。
此外,使用集成梯度法验证了其可解释性,该方法揭示了对预测有贡献的临床相关脑区,增强了其在有意义的临床应用中的潜力。我们的代码可在https://github.com/sunyzhi55/TriLightNet获取。